Metamath Proof Explorer


Theorem ocvi

Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V = Base W
ocvfval.i , ˙ = 𝑖 W
ocvfval.f F = Scalar W
ocvfval.z 0 ˙ = 0 F
ocvfval.o ˙ = ocv W
Assertion ocvi A ˙ S B S A , ˙ B = 0 ˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V = Base W
2 ocvfval.i , ˙ = 𝑖 W
3 ocvfval.f F = Scalar W
4 ocvfval.z 0 ˙ = 0 F
5 ocvfval.o ˙ = ocv W
6 1 2 3 4 5 elocv A ˙ S S V A V x S A , ˙ x = 0 ˙
7 6 simp3bi A ˙ S x S A , ˙ x = 0 ˙
8 oveq2 x = B A , ˙ x = A , ˙ B
9 8 eqeq1d x = B A , ˙ x = 0 ˙ A , ˙ B = 0 ˙
10 9 rspccva x S A , ˙ x = 0 ˙ B S A , ˙ B = 0 ˙
11 7 10 sylan A ˙ S B S A , ˙ B = 0 ˙