Metamath Proof Explorer


Theorem ocvin

Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses ocv2ss.o ˙ = ocv W
ocvin.l L = LSubSp W
ocvin.z 0 ˙ = 0 W
Assertion ocvin W PreHil S L S ˙ S = 0 ˙

Proof

Step Hyp Ref Expression
1 ocv2ss.o ˙ = ocv W
2 ocvin.l L = LSubSp W
3 ocvin.z 0 ˙ = 0 W
4 eqid Base W = Base W
5 eqid 𝑖 W = 𝑖 W
6 eqid Scalar W = Scalar W
7 eqid 0 Scalar W = 0 Scalar W
8 4 5 6 7 1 ocvi x ˙ S x S x 𝑖 W x = 0 Scalar W
9 8 ancoms x S x ˙ S x 𝑖 W x = 0 Scalar W
10 9 adantl W PreHil S L x S x ˙ S x 𝑖 W x = 0 Scalar W
11 simpll W PreHil S L x S x ˙ S W PreHil
12 4 2 lssel S L x S x Base W
13 12 ad2ant2lr W PreHil S L x S x ˙ S x Base W
14 6 5 4 7 3 ipeq0 W PreHil x Base W x 𝑖 W x = 0 Scalar W x = 0 ˙
15 11 13 14 syl2anc W PreHil S L x S x ˙ S x 𝑖 W x = 0 Scalar W x = 0 ˙
16 10 15 mpbid W PreHil S L x S x ˙ S x = 0 ˙
17 16 ex W PreHil S L x S x ˙ S x = 0 ˙
18 elin x S ˙ S x S x ˙ S
19 velsn x 0 ˙ x = 0 ˙
20 17 18 19 3imtr4g W PreHil S L x S ˙ S x 0 ˙
21 20 ssrdv W PreHil S L S ˙ S 0 ˙
22 phllmod W PreHil W LMod
23 4 2 lssss S L S Base W
24 4 1 2 ocvlss W PreHil S Base W ˙ S L
25 23 24 sylan2 W PreHil S L ˙ S L
26 2 lssincl W LMod S L ˙ S L S ˙ S L
27 22 26 syl3an1 W PreHil S L ˙ S L S ˙ S L
28 25 27 mpd3an3 W PreHil S L S ˙ S L
29 3 2 lss0ss W LMod S ˙ S L 0 ˙ S ˙ S
30 22 28 29 syl2an2r W PreHil S L 0 ˙ S ˙ S
31 21 30 eqssd W PreHil S L S ˙ S = 0 ˙