Metamath Proof Explorer


Theorem ocvlsp

Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v V = Base W
ocvlsp.o ˙ = ocv W
ocvlsp.n N = LSpan W
Assertion ocvlsp W PreHil S V ˙ N S = ˙ S

Proof

Step Hyp Ref Expression
1 ocvlsp.v V = Base W
2 ocvlsp.o ˙ = ocv W
3 ocvlsp.n N = LSpan W
4 phllmod W PreHil W LMod
5 1 3 lspssid W LMod S V S N S
6 4 5 sylan W PreHil S V S N S
7 2 ocv2ss S N S ˙ N S ˙ S
8 6 7 syl W PreHil S V ˙ N S ˙ S
9 1 2 ocvss ˙ S V
10 9 a1i W PreHil S V ˙ S V
11 1 2 ocvocv W PreHil ˙ S V ˙ S ˙ ˙ ˙ S
12 10 11 syldan W PreHil S V ˙ S ˙ ˙ ˙ S
13 4 adantr W PreHil S V W LMod
14 eqid LSubSp W = LSubSp W
15 1 2 14 ocvlss W PreHil ˙ S V ˙ ˙ S LSubSp W
16 10 15 syldan W PreHil S V ˙ ˙ S LSubSp W
17 1 2 ocvocv W PreHil S V S ˙ ˙ S
18 14 3 lspssp W LMod ˙ ˙ S LSubSp W S ˙ ˙ S N S ˙ ˙ S
19 13 16 17 18 syl3anc W PreHil S V N S ˙ ˙ S
20 2 ocv2ss N S ˙ ˙ S ˙ ˙ ˙ S ˙ N S
21 19 20 syl W PreHil S V ˙ ˙ ˙ S ˙ N S
22 12 21 sstrd W PreHil S V ˙ S ˙ N S
23 8 22 eqssd W PreHil S V ˙ N S = ˙ S