Step |
Hyp |
Ref |
Expression |
1 |
|
ocvss.v |
|
2 |
|
ocvss.o |
|
3 |
|
ocvlss.l |
|
4 |
1 2
|
ocvss |
|
5 |
4
|
a1i |
|
6 |
|
simpr |
|
7 |
|
phllmod |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
1 9
|
lmod0vcl |
|
11 |
8 10
|
syl |
|
12 |
|
simpll |
|
13 |
6
|
sselda |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
14 15 1 16 9
|
ip0l |
|
18 |
12 13 17
|
syl2anc |
|
19 |
18
|
ralrimiva |
|
20 |
1 15 14 16 2
|
elocv |
|
21 |
6 11 19 20
|
syl3anbrc |
|
22 |
21
|
ne0d |
|
23 |
6
|
adantr |
|
24 |
8
|
adantr |
|
25 |
|
simpr1 |
|
26 |
|
simpr2 |
|
27 |
4 26
|
sselid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
1 14 28 29
|
lmodvscl |
|
31 |
24 25 27 30
|
syl3anc |
|
32 |
|
simpr3 |
|
33 |
4 32
|
sselid |
|
34 |
|
eqid |
|
35 |
1 34
|
lmodvacl |
|
36 |
24 31 33 35
|
syl3anc |
|
37 |
12
|
adantlr |
|
38 |
31
|
adantr |
|
39 |
33
|
adantr |
|
40 |
13
|
adantlr |
|
41 |
|
eqid |
|
42 |
14 15 1 34 41
|
ipdir |
|
43 |
37 38 39 40 42
|
syl13anc |
|
44 |
25
|
adantr |
|
45 |
27
|
adantr |
|
46 |
|
eqid |
|
47 |
14 15 1 29 28 46
|
ipass |
|
48 |
37 44 45 40 47
|
syl13anc |
|
49 |
1 15 14 16 2
|
ocvi |
|
50 |
26 49
|
sylan |
|
51 |
50
|
oveq2d |
|
52 |
24
|
adantr |
|
53 |
14
|
lmodring |
|
54 |
52 53
|
syl |
|
55 |
29 46 16
|
ringrz |
|
56 |
54 44 55
|
syl2anc |
|
57 |
48 51 56
|
3eqtrd |
|
58 |
1 15 14 16 2
|
ocvi |
|
59 |
32 58
|
sylan |
|
60 |
57 59
|
oveq12d |
|
61 |
14
|
lmodfgrp |
|
62 |
29 16
|
grpidcl |
|
63 |
29 41 16
|
grplid |
|
64 |
62 63
|
mpdan |
|
65 |
52 61 64
|
3syl |
|
66 |
43 60 65
|
3eqtrd |
|
67 |
66
|
ralrimiva |
|
68 |
1 15 14 16 2
|
elocv |
|
69 |
23 36 67 68
|
syl3anbrc |
|
70 |
69
|
ralrimivvva |
|
71 |
14 29 1 34 28 3
|
islss |
|
72 |
5 22 70 71
|
syl3anbrc |
|