Metamath Proof Explorer


Theorem ocvocv

Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvss.v V = Base W
ocvss.o ˙ = ocv W
Assertion ocvocv W PreHil S V S ˙ ˙ S

Proof

Step Hyp Ref Expression
1 ocvss.v V = Base W
2 ocvss.o ˙ = ocv W
3 1 2 ocvss ˙ S V
4 3 a1i W PreHil S V x S ˙ S V
5 simpr W PreHil S V S V
6 5 sselda W PreHil S V x S x V
7 eqid 𝑖 W = 𝑖 W
8 eqid Scalar W = Scalar W
9 eqid 0 Scalar W = 0 Scalar W
10 1 7 8 9 2 ocvi y ˙ S x S y 𝑖 W x = 0 Scalar W
11 10 ancoms x S y ˙ S y 𝑖 W x = 0 Scalar W
12 11 adantll W PreHil S V x S y ˙ S y 𝑖 W x = 0 Scalar W
13 simplll W PreHil S V x S y ˙ S W PreHil
14 4 sselda W PreHil S V x S y ˙ S y V
15 6 adantr W PreHil S V x S y ˙ S x V
16 8 7 1 9 iporthcom W PreHil y V x V y 𝑖 W x = 0 Scalar W x 𝑖 W y = 0 Scalar W
17 13 14 15 16 syl3anc W PreHil S V x S y ˙ S y 𝑖 W x = 0 Scalar W x 𝑖 W y = 0 Scalar W
18 12 17 mpbid W PreHil S V x S y ˙ S x 𝑖 W y = 0 Scalar W
19 18 ralrimiva W PreHil S V x S y ˙ S x 𝑖 W y = 0 Scalar W
20 1 7 8 9 2 elocv x ˙ ˙ S ˙ S V x V y ˙ S x 𝑖 W y = 0 Scalar W
21 4 6 19 20 syl3anbrc W PreHil S V x S x ˙ ˙ S
22 21 ex W PreHil S V x S x ˙ ˙ S
23 22 ssrdv W PreHil S V S ˙ ˙ S