Metamath Proof Explorer


Theorem ocvss

Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvss.v V = Base W
ocvss.o ˙ = ocv W
Assertion ocvss ˙ S V

Proof

Step Hyp Ref Expression
1 ocvss.v V = Base W
2 ocvss.o ˙ = ocv W
3 eqid 𝑖 W = 𝑖 W
4 eqid Scalar W = Scalar W
5 eqid 0 Scalar W = 0 Scalar W
6 1 3 4 5 2 elocv x ˙ S S V x V y S x 𝑖 W y = 0 Scalar W
7 6 simp2bi x ˙ S x V
8 7 ssriv ˙ S V