Metamath Proof Explorer


Theorem ocvsscon

Description: Two ways to say that S and T are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v V = Base W
ocvlsp.o ˙ = ocv W
Assertion ocvsscon W PreHil S V T V S ˙ T T ˙ S

Proof

Step Hyp Ref Expression
1 ocvlsp.v V = Base W
2 ocvlsp.o ˙ = ocv W
3 1 2 ocvocv W PreHil T V T ˙ ˙ T
4 3 3adant2 W PreHil S V T V T ˙ ˙ T
5 2 ocv2ss S ˙ T ˙ ˙ T ˙ S
6 sstr2 T ˙ ˙ T ˙ ˙ T ˙ S T ˙ S
7 4 5 6 syl2im W PreHil S V T V S ˙ T T ˙ S
8 1 2 ocvocv W PreHil S V S ˙ ˙ S
9 8 3adant3 W PreHil S V T V S ˙ ˙ S
10 2 ocv2ss T ˙ S ˙ ˙ S ˙ T
11 sstr2 S ˙ ˙ S ˙ ˙ S ˙ T S ˙ T
12 9 10 11 syl2im W PreHil S V T V T ˙ S S ˙ T
13 7 12 impbid W PreHil S V T V S ˙ T T ˙ S