Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
ocvz
Next ⟩
ocv1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ocvz
Description:
The orthocomplement of the zero subspace.
(Contributed by
Mario Carneiro
, 23-Oct-2015)
Ref
Expression
Hypotheses
ocvz.v
⊢
V
=
Base
W
ocvz.o
⊢
⊥
˙
=
ocv
⁡
W
ocvz.z
⊢
0
˙
=
0
W
Assertion
ocvz
⊢
W
∈
PreHil
→
⊥
˙
⁡
0
˙
=
V
Proof
Step
Hyp
Ref
Expression
1
ocvz.v
⊢
V
=
Base
W
2
ocvz.o
⊢
⊥
˙
=
ocv
⁡
W
3
ocvz.z
⊢
0
˙
=
0
W
4
phllmod
⊢
W
∈
PreHil
→
W
∈
LMod
5
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
6
3
5
lsp0
⊢
W
∈
LMod
→
LSpan
⁡
W
⁡
∅
=
0
˙
7
4
6
syl
⊢
W
∈
PreHil
→
LSpan
⁡
W
⁡
∅
=
0
˙
8
7
fveq2d
⊢
W
∈
PreHil
→
⊥
˙
⁡
LSpan
⁡
W
⁡
∅
=
⊥
˙
⁡
0
˙
9
0ss
⊢
∅
⊆
V
10
1
2
5
ocvlsp
⊢
W
∈
PreHil
∧
∅
⊆
V
→
⊥
˙
⁡
LSpan
⁡
W
⁡
∅
=
⊥
˙
⁡
∅
11
9
10
mpan2
⊢
W
∈
PreHil
→
⊥
˙
⁡
LSpan
⁡
W
⁡
∅
=
⊥
˙
⁡
∅
12
1
2
ocv0
⊢
⊥
˙
⁡
∅
=
V
13
11
12
eqtrdi
⊢
W
∈
PreHil
→
⊥
˙
⁡
LSpan
⁡
W
⁡
∅
=
V
14
8
13
eqtr3d
⊢
W
∈
PreHil
→
⊥
˙
⁡
0
˙
=
V