Metamath Proof Explorer


Theorem od1

Description: The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses od1.1 O = od G
od1.2 0 ˙ = 0 G
Assertion od1 G Grp O 0 ˙ = 1

Proof

Step Hyp Ref Expression
1 od1.1 O = od G
2 od1.2 0 ˙ = 0 G
3 eqid Base G = Base G
4 3 2 grpidcl G Grp 0 ˙ Base G
5 1nn 1
6 5 a1i G Grp 1
7 eqid G = G
8 3 7 mulg1 0 ˙ Base G 1 G 0 ˙ = 0 ˙
9 4 8 syl G Grp 1 G 0 ˙ = 0 ˙
10 3 1 7 2 odlem2 0 ˙ Base G 1 1 G 0 ˙ = 0 ˙ O 0 ˙ 1 1
11 4 6 9 10 syl3anc G Grp O 0 ˙ 1 1
12 elfz1eq O 0 ˙ 1 1 O 0 ˙ = 1
13 11 12 syl G Grp O 0 ˙ = 1