Metamath Proof Explorer


Theorem odadd

Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses odadd1.1 O = od G
odadd1.2 X = Base G
odadd1.3 + ˙ = + G
Assertion odadd G Abel A X B X O A gcd O B = 1 O A + ˙ B = O A O B

Proof

Step Hyp Ref Expression
1 odadd1.1 O = od G
2 odadd1.2 X = Base G
3 odadd1.3 + ˙ = + G
4 simpl1 G Abel A X B X O A gcd O B = 1 G Abel
5 ablgrp G Abel G Grp
6 4 5 syl G Abel A X B X O A gcd O B = 1 G Grp
7 simpl2 G Abel A X B X O A gcd O B = 1 A X
8 simpl3 G Abel A X B X O A gcd O B = 1 B X
9 2 3 grpcl G Grp A X B X A + ˙ B X
10 6 7 8 9 syl3anc G Abel A X B X O A gcd O B = 1 A + ˙ B X
11 2 1 odcl A + ˙ B X O A + ˙ B 0
12 10 11 syl G Abel A X B X O A gcd O B = 1 O A + ˙ B 0
13 2 1 odcl A X O A 0
14 7 13 syl G Abel A X B X O A gcd O B = 1 O A 0
15 2 1 odcl B X O B 0
16 8 15 syl G Abel A X B X O A gcd O B = 1 O B 0
17 14 16 nn0mulcld G Abel A X B X O A gcd O B = 1 O A O B 0
18 simpr G Abel A X B X O A gcd O B = 1 O A gcd O B = 1
19 18 oveq2d G Abel A X B X O A gcd O B = 1 O A + ˙ B O A gcd O B = O A + ˙ B 1
20 12 nn0cnd G Abel A X B X O A gcd O B = 1 O A + ˙ B
21 20 mulid1d G Abel A X B X O A gcd O B = 1 O A + ˙ B 1 = O A + ˙ B
22 19 21 eqtrd G Abel A X B X O A gcd O B = 1 O A + ˙ B O A gcd O B = O A + ˙ B
23 1 2 3 odadd1 G Abel A X B X O A + ˙ B O A gcd O B O A O B
24 23 adantr G Abel A X B X O A gcd O B = 1 O A + ˙ B O A gcd O B O A O B
25 22 24 eqbrtrrd G Abel A X B X O A gcd O B = 1 O A + ˙ B O A O B
26 1 2 3 odadd2 G Abel A X B X O A O B O A + ˙ B O A gcd O B 2
27 26 adantr G Abel A X B X O A gcd O B = 1 O A O B O A + ˙ B O A gcd O B 2
28 18 oveq1d G Abel A X B X O A gcd O B = 1 O A gcd O B 2 = 1 2
29 sq1 1 2 = 1
30 28 29 eqtrdi G Abel A X B X O A gcd O B = 1 O A gcd O B 2 = 1
31 30 oveq2d G Abel A X B X O A gcd O B = 1 O A + ˙ B O A gcd O B 2 = O A + ˙ B 1
32 31 21 eqtrd G Abel A X B X O A gcd O B = 1 O A + ˙ B O A gcd O B 2 = O A + ˙ B
33 27 32 breqtrd G Abel A X B X O A gcd O B = 1 O A O B O A + ˙ B
34 dvdseq O A + ˙ B 0 O A O B 0 O A + ˙ B O A O B O A O B O A + ˙ B O A + ˙ B = O A O B
35 12 17 25 33 34 syl22anc G Abel A X B X O A gcd O B = 1 O A + ˙ B = O A O B