Metamath Proof Explorer


Theorem odadd2

Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses odadd1.1 O = od G
odadd1.2 X = Base G
odadd1.3 + ˙ = + G
Assertion odadd2 G Abel A X B X O A O B O A + ˙ B O A gcd O B 2

Proof

Step Hyp Ref Expression
1 odadd1.1 O = od G
2 odadd1.2 X = Base G
3 odadd1.3 + ˙ = + G
4 2 1 odcl A X O A 0
5 4 3ad2ant2 G Abel A X B X O A 0
6 5 nn0zd G Abel A X B X O A
7 2 1 odcl B X O B 0
8 7 3ad2ant3 G Abel A X B X O B 0
9 8 nn0zd G Abel A X B X O B
10 6 9 zmulcld G Abel A X B X O A O B
11 10 adantr G Abel A X B X O A gcd O B = 0 O A O B
12 dvds0 O A O B O A O B 0
13 11 12 syl G Abel A X B X O A gcd O B = 0 O A O B 0
14 simpr G Abel A X B X O A gcd O B = 0 O A gcd O B = 0
15 14 sq0id G Abel A X B X O A gcd O B = 0 O A gcd O B 2 = 0
16 15 oveq2d G Abel A X B X O A gcd O B = 0 O A + ˙ B O A gcd O B 2 = O A + ˙ B 0
17 ablgrp G Abel G Grp
18 2 3 grpcl G Grp A X B X A + ˙ B X
19 17 18 syl3an1 G Abel A X B X A + ˙ B X
20 2 1 odcl A + ˙ B X O A + ˙ B 0
21 19 20 syl G Abel A X B X O A + ˙ B 0
22 21 nn0zd G Abel A X B X O A + ˙ B
23 22 adantr G Abel A X B X O A gcd O B = 0 O A + ˙ B
24 23 zcnd G Abel A X B X O A gcd O B = 0 O A + ˙ B
25 24 mul01d G Abel A X B X O A gcd O B = 0 O A + ˙ B 0 = 0
26 16 25 eqtrd G Abel A X B X O A gcd O B = 0 O A + ˙ B O A gcd O B 2 = 0
27 13 26 breqtrrd G Abel A X B X O A gcd O B = 0 O A O B O A + ˙ B O A gcd O B 2
28 6 adantr G Abel A X B X O A gcd O B 0 O A
29 9 adantr G Abel A X B X O A gcd O B 0 O B
30 28 29 gcdcld G Abel A X B X O A gcd O B 0 O A gcd O B 0
31 30 nn0cnd G Abel A X B X O A gcd O B 0 O A gcd O B
32 31 sqvald G Abel A X B X O A gcd O B 0 O A gcd O B 2 = O A gcd O B O A gcd O B
33 32 oveq2d G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B O A gcd O B 2 = O A O A gcd O B O B O A gcd O B O A gcd O B O A gcd O B
34 gcddvds O A O B O A gcd O B O A O A gcd O B O B
35 28 29 34 syl2anc G Abel A X B X O A gcd O B 0 O A gcd O B O A O A gcd O B O B
36 35 simpld G Abel A X B X O A gcd O B 0 O A gcd O B O A
37 30 nn0zd G Abel A X B X O A gcd O B 0 O A gcd O B
38 simpr G Abel A X B X O A gcd O B 0 O A gcd O B 0
39 dvdsval2 O A gcd O B O A gcd O B 0 O A O A gcd O B O A O A O A gcd O B
40 37 38 28 39 syl3anc G Abel A X B X O A gcd O B 0 O A gcd O B O A O A O A gcd O B
41 36 40 mpbid G Abel A X B X O A gcd O B 0 O A O A gcd O B
42 41 zcnd G Abel A X B X O A gcd O B 0 O A O A gcd O B
43 35 simprd G Abel A X B X O A gcd O B 0 O A gcd O B O B
44 dvdsval2 O A gcd O B O A gcd O B 0 O B O A gcd O B O B O B O A gcd O B
45 37 38 29 44 syl3anc G Abel A X B X O A gcd O B 0 O A gcd O B O B O B O A gcd O B
46 43 45 mpbid G Abel A X B X O A gcd O B 0 O B O A gcd O B
47 46 zcnd G Abel A X B X O A gcd O B 0 O B O A gcd O B
48 42 31 47 31 mul4d G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B O B O A gcd O B O A gcd O B = O A O A gcd O B O B O A gcd O B O A gcd O B O A gcd O B
49 28 zcnd G Abel A X B X O A gcd O B 0 O A
50 49 31 38 divcan1d G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B = O A
51 29 zcnd G Abel A X B X O A gcd O B 0 O B
52 51 31 38 divcan1d G Abel A X B X O A gcd O B 0 O B O A gcd O B O A gcd O B = O B
53 50 52 oveq12d G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B O B O A gcd O B O A gcd O B = O A O B
54 33 48 53 3eqtr2d G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B O A gcd O B 2 = O A O B
55 22 adantr G Abel A X B X O A gcd O B 0 O A + ˙ B
56 dvdsmul2 O A + ˙ B O A O A O A + ˙ B O A
57 55 28 56 syl2anc G Abel A X B X O A gcd O B 0 O A O A + ˙ B O A
58 simpl1 G Abel A X B X O A gcd O B 0 G Abel
59 55 29 zmulcld G Abel A X B X O A gcd O B 0 O A + ˙ B O B
60 simpl2 G Abel A X B X O A gcd O B 0 A X
61 simpl3 G Abel A X B X O A gcd O B 0 B X
62 eqid G = G
63 2 62 3 mulgdi G Abel O A + ˙ B O B A X B X O A + ˙ B O B G A + ˙ B = O A + ˙ B O B G A + ˙ O A + ˙ B O B G B
64 58 59 60 61 63 syl13anc G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A + ˙ B = O A + ˙ B O B G A + ˙ O A + ˙ B O B G B
65 dvdsmul2 O A + ˙ B O B O B O A + ˙ B O B
66 55 29 65 syl2anc G Abel A X B X O A gcd O B 0 O B O A + ˙ B O B
67 58 17 syl G Abel A X B X O A gcd O B 0 G Grp
68 eqid 0 G = 0 G
69 2 1 62 68 oddvds G Grp B X O A + ˙ B O B O B O A + ˙ B O B O A + ˙ B O B G B = 0 G
70 67 61 59 69 syl3anc G Abel A X B X O A gcd O B 0 O B O A + ˙ B O B O A + ˙ B O B G B = 0 G
71 66 70 mpbid G Abel A X B X O A gcd O B 0 O A + ˙ B O B G B = 0 G
72 71 oveq2d G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A + ˙ O A + ˙ B O B G B = O A + ˙ B O B G A + ˙ 0 G
73 64 72 eqtrd G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A + ˙ B = O A + ˙ B O B G A + ˙ 0 G
74 dvdsmul1 O A + ˙ B O B O A + ˙ B O A + ˙ B O B
75 55 29 74 syl2anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A + ˙ B O B
76 19 adantr G Abel A X B X O A gcd O B 0 A + ˙ B X
77 2 1 62 68 oddvds G Grp A + ˙ B X O A + ˙ B O B O A + ˙ B O A + ˙ B O B O A + ˙ B O B G A + ˙ B = 0 G
78 67 76 59 77 syl3anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A + ˙ B O B O A + ˙ B O B G A + ˙ B = 0 G
79 75 78 mpbid G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A + ˙ B = 0 G
80 2 62 mulgcl G Grp O A + ˙ B O B A X O A + ˙ B O B G A X
81 67 59 60 80 syl3anc G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A X
82 2 3 68 grprid G Grp O A + ˙ B O B G A X O A + ˙ B O B G A + ˙ 0 G = O A + ˙ B O B G A
83 67 81 82 syl2anc G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A + ˙ 0 G = O A + ˙ B O B G A
84 73 79 83 3eqtr3rd G Abel A X B X O A gcd O B 0 O A + ˙ B O B G A = 0 G
85 2 1 62 68 oddvds G Grp A X O A + ˙ B O B O A O A + ˙ B O B O A + ˙ B O B G A = 0 G
86 67 60 59 85 syl3anc G Abel A X B X O A gcd O B 0 O A O A + ˙ B O B O A + ˙ B O B G A = 0 G
87 84 86 mpbird G Abel A X B X O A gcd O B 0 O A O A + ˙ B O B
88 55 28 zmulcld G Abel A X B X O A gcd O B 0 O A + ˙ B O A
89 dvdsgcd O A O A + ˙ B O A O A + ˙ B O B O A O A + ˙ B O A O A O A + ˙ B O B O A O A + ˙ B O A gcd O A + ˙ B O B
90 28 88 59 89 syl3anc G Abel A X B X O A gcd O B 0 O A O A + ˙ B O A O A O A + ˙ B O B O A O A + ˙ B O A gcd O A + ˙ B O B
91 57 87 90 mp2and G Abel A X B X O A gcd O B 0 O A O A + ˙ B O A gcd O A + ˙ B O B
92 21 adantr G Abel A X B X O A gcd O B 0 O A + ˙ B 0
93 mulgcd O A + ˙ B 0 O A O B O A + ˙ B O A gcd O A + ˙ B O B = O A + ˙ B O A gcd O B
94 92 28 29 93 syl3anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A gcd O A + ˙ B O B = O A + ˙ B O A gcd O B
95 91 94 breqtrd G Abel A X B X O A gcd O B 0 O A O A + ˙ B O A gcd O B
96 50 95 eqbrtrd G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B O A + ˙ B O A gcd O B
97 dvdsmulcr O A O A gcd O B O A + ˙ B O A gcd O B O A gcd O B 0 O A O A gcd O B O A gcd O B O A + ˙ B O A gcd O B O A O A gcd O B O A + ˙ B
98 41 55 37 38 97 syl112anc G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B O A + ˙ B O A gcd O B O A O A gcd O B O A + ˙ B
99 96 98 mpbid G Abel A X B X O A gcd O B 0 O A O A gcd O B O A + ˙ B
100 2 62 3 mulgdi G Abel O A + ˙ B O A A X B X O A + ˙ B O A G A + ˙ B = O A + ˙ B O A G A + ˙ O A + ˙ B O A G B
101 58 88 60 61 100 syl13anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A G A + ˙ B = O A + ˙ B O A G A + ˙ O A + ˙ B O A G B
102 2 1 62 68 oddvds G Grp A X O A + ˙ B O A O A O A + ˙ B O A O A + ˙ B O A G A = 0 G
103 67 60 88 102 syl3anc G Abel A X B X O A gcd O B 0 O A O A + ˙ B O A O A + ˙ B O A G A = 0 G
104 57 103 mpbid G Abel A X B X O A gcd O B 0 O A + ˙ B O A G A = 0 G
105 104 oveq1d G Abel A X B X O A gcd O B 0 O A + ˙ B O A G A + ˙ O A + ˙ B O A G B = 0 G + ˙ O A + ˙ B O A G B
106 101 105 eqtrd G Abel A X B X O A gcd O B 0 O A + ˙ B O A G A + ˙ B = 0 G + ˙ O A + ˙ B O A G B
107 dvdsmul1 O A + ˙ B O A O A + ˙ B O A + ˙ B O A
108 55 28 107 syl2anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A + ˙ B O A
109 2 1 62 68 oddvds G Grp A + ˙ B X O A + ˙ B O A O A + ˙ B O A + ˙ B O A O A + ˙ B O A G A + ˙ B = 0 G
110 67 76 88 109 syl3anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A + ˙ B O A O A + ˙ B O A G A + ˙ B = 0 G
111 108 110 mpbid G Abel A X B X O A gcd O B 0 O A + ˙ B O A G A + ˙ B = 0 G
112 2 62 mulgcl G Grp O A + ˙ B O A B X O A + ˙ B O A G B X
113 67 88 61 112 syl3anc G Abel A X B X O A gcd O B 0 O A + ˙ B O A G B X
114 2 3 68 grplid G Grp O A + ˙ B O A G B X 0 G + ˙ O A + ˙ B O A G B = O A + ˙ B O A G B
115 67 113 114 syl2anc G Abel A X B X O A gcd O B 0 0 G + ˙ O A + ˙ B O A G B = O A + ˙ B O A G B
116 106 111 115 3eqtr3rd G Abel A X B X O A gcd O B 0 O A + ˙ B O A G B = 0 G
117 2 1 62 68 oddvds G Grp B X O A + ˙ B O A O B O A + ˙ B O A O A + ˙ B O A G B = 0 G
118 67 61 88 117 syl3anc G Abel A X B X O A gcd O B 0 O B O A + ˙ B O A O A + ˙ B O A G B = 0 G
119 116 118 mpbird G Abel A X B X O A gcd O B 0 O B O A + ˙ B O A
120 dvdsgcd O B O A + ˙ B O A O A + ˙ B O B O B O A + ˙ B O A O B O A + ˙ B O B O B O A + ˙ B O A gcd O A + ˙ B O B
121 29 88 59 120 syl3anc G Abel A X B X O A gcd O B 0 O B O A + ˙ B O A O B O A + ˙ B O B O B O A + ˙ B O A gcd O A + ˙ B O B
122 119 66 121 mp2and G Abel A X B X O A gcd O B 0 O B O A + ˙ B O A gcd O A + ˙ B O B
123 122 94 breqtrd G Abel A X B X O A gcd O B 0 O B O A + ˙ B O A gcd O B
124 52 123 eqbrtrd G Abel A X B X O A gcd O B 0 O B O A gcd O B O A gcd O B O A + ˙ B O A gcd O B
125 dvdsmulcr O B O A gcd O B O A + ˙ B O A gcd O B O A gcd O B 0 O B O A gcd O B O A gcd O B O A + ˙ B O A gcd O B O B O A gcd O B O A + ˙ B
126 46 55 37 38 125 syl112anc G Abel A X B X O A gcd O B 0 O B O A gcd O B O A gcd O B O A + ˙ B O A gcd O B O B O A gcd O B O A + ˙ B
127 124 126 mpbid G Abel A X B X O A gcd O B 0 O B O A gcd O B O A + ˙ B
128 41 46 gcdcld G Abel A X B X O A gcd O B 0 O A O A gcd O B gcd O B O A gcd O B 0
129 128 nn0cnd G Abel A X B X O A gcd O B 0 O A O A gcd O B gcd O B O A gcd O B
130 1cnd G Abel A X B X O A gcd O B 0 1
131 31 mulid2d G Abel A X B X O A gcd O B 0 1 O A gcd O B = O A gcd O B
132 50 52 oveq12d G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B gcd O B O A gcd O B O A gcd O B = O A gcd O B
133 mulgcdr O A O A gcd O B O B O A gcd O B O A gcd O B 0 O A O A gcd O B O A gcd O B gcd O B O A gcd O B O A gcd O B = O A O A gcd O B gcd O B O A gcd O B O A gcd O B
134 41 46 30 133 syl3anc G Abel A X B X O A gcd O B 0 O A O A gcd O B O A gcd O B gcd O B O A gcd O B O A gcd O B = O A O A gcd O B gcd O B O A gcd O B O A gcd O B
135 131 132 134 3eqtr2rd G Abel A X B X O A gcd O B 0 O A O A gcd O B gcd O B O A gcd O B O A gcd O B = 1 O A gcd O B
136 129 130 31 38 135 mulcan2ad G Abel A X B X O A gcd O B 0 O A O A gcd O B gcd O B O A gcd O B = 1
137 coprmdvds2 O A O A gcd O B O B O A gcd O B O A + ˙ B O A O A gcd O B gcd O B O A gcd O B = 1 O A O A gcd O B O A + ˙ B O B O A gcd O B O A + ˙ B O A O A gcd O B O B O A gcd O B O A + ˙ B
138 41 46 55 136 137 syl31anc G Abel A X B X O A gcd O B 0 O A O A gcd O B O A + ˙ B O B O A gcd O B O A + ˙ B O A O A gcd O B O B O A gcd O B O A + ˙ B
139 99 127 138 mp2and G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B O A + ˙ B
140 41 46 zmulcld G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B
141 zsqcl O A gcd O B O A gcd O B 2
142 37 141 syl G Abel A X B X O A gcd O B 0 O A gcd O B 2
143 dvdsmulc O A O A gcd O B O B O A gcd O B O A + ˙ B O A gcd O B 2 O A O A gcd O B O B O A gcd O B O A + ˙ B O A O A gcd O B O B O A gcd O B O A gcd O B 2 O A + ˙ B O A gcd O B 2
144 140 55 142 143 syl3anc G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B O A + ˙ B O A O A gcd O B O B O A gcd O B O A gcd O B 2 O A + ˙ B O A gcd O B 2
145 139 144 mpd G Abel A X B X O A gcd O B 0 O A O A gcd O B O B O A gcd O B O A gcd O B 2 O A + ˙ B O A gcd O B 2
146 54 145 eqbrtrrd G Abel A X B X O A gcd O B 0 O A O B O A + ˙ B O A gcd O B 2
147 27 146 pm2.61dane G Abel A X B X O A O B O A + ˙ B O A gcd O B 2