| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odmulgid.1 |  | 
						
							| 2 |  | odmulgid.2 |  | 
						
							| 3 |  | odmulgid.3 |  | 
						
							| 4 |  | simpl3 |  | 
						
							| 5 |  | simpl2 |  | 
						
							| 6 | 1 2 | odcl |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | nn0zd |  | 
						
							| 9 |  | bezout |  | 
						
							| 10 | 4 8 9 | syl2anc |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 11 | eqcoms |  | 
						
							| 13 |  | simpll1 |  | 
						
							| 14 | 4 | adantr |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 | 14 15 | zmulcld |  | 
						
							| 17 | 5 | adantr |  | 
						
							| 18 | 17 6 | syl |  | 
						
							| 19 | 18 | nn0zd |  | 
						
							| 20 |  | simprr |  | 
						
							| 21 | 19 20 | zmulcld |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 1 3 22 | mulgdir |  | 
						
							| 24 | 13 16 21 17 23 | syl13anc |  | 
						
							| 25 | 14 | zcnd |  | 
						
							| 26 | 15 | zcnd |  | 
						
							| 27 | 25 26 | mulcomd |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 | 1 3 | mulgass |  | 
						
							| 30 | 13 15 14 17 29 | syl13anc |  | 
						
							| 31 | 28 30 | eqtrd |  | 
						
							| 32 |  | dvdsmul1 |  | 
						
							| 33 | 19 20 32 | syl2anc |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 2 3 34 | oddvds |  | 
						
							| 36 | 13 17 21 35 | syl3anc |  | 
						
							| 37 | 33 36 | mpbid |  | 
						
							| 38 | 31 37 | oveq12d |  | 
						
							| 39 | 1 3 | mulgcl |  | 
						
							| 40 | 13 14 17 39 | syl3anc |  | 
						
							| 41 | 1 3 | mulgcl |  | 
						
							| 42 | 13 15 40 41 | syl3anc |  | 
						
							| 43 | 1 22 34 | grprid |  | 
						
							| 44 | 13 42 43 | syl2anc |  | 
						
							| 45 | 38 44 | eqtrd |  | 
						
							| 46 | 24 45 | eqtrd |  | 
						
							| 47 |  | simplr |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 1 3 | mulg1 |  | 
						
							| 50 | 17 49 | syl |  | 
						
							| 51 | 48 50 | eqtrd |  | 
						
							| 52 | 46 51 | eqeq12d |  | 
						
							| 53 | 12 52 | imbitrid |  | 
						
							| 54 | 53 | anassrs |  | 
						
							| 55 | 54 | rexlimdva |  | 
						
							| 56 | 55 | reximdva |  | 
						
							| 57 | 10 56 | mpd |  |