| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcau.x |
|
| 2 |
|
odcau.o |
|
| 3 |
|
simpl1 |
|
| 4 |
|
simpl2 |
|
| 5 |
|
simpl3 |
|
| 6 |
|
1nn0 |
|
| 7 |
6
|
a1i |
|
| 8 |
|
prmnn |
|
| 9 |
5 8
|
syl |
|
| 10 |
9
|
nncnd |
|
| 11 |
10
|
exp1d |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
eqbrtrd |
|
| 14 |
1 3 4 5 7 13
|
sylow1 |
|
| 15 |
11
|
eqeq2d |
|
| 16 |
15
|
adantr |
|
| 17 |
|
fvex |
|
| 18 |
|
hashsng |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
|
simprr |
|
| 21 |
5
|
adantr |
|
| 22 |
|
prmuz2 |
|
| 23 |
21 22
|
syl |
|
| 24 |
20 23
|
eqeltrd |
|
| 25 |
|
eluz2gt1 |
|
| 26 |
24 25
|
syl |
|
| 27 |
19 26
|
eqbrtrid |
|
| 28 |
|
snfi |
|
| 29 |
4
|
adantr |
|
| 30 |
1
|
subgss |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
29 31
|
ssfid |
|
| 33 |
|
hashsdom |
|
| 34 |
28 32 33
|
sylancr |
|
| 35 |
27 34
|
mpbid |
|
| 36 |
|
sdomdif |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
n0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
|
eldifsn |
|
| 41 |
31
|
adantrr |
|
| 42 |
|
simprrl |
|
| 43 |
41 42
|
sseldd |
|
| 44 |
|
simprrr |
|
| 45 |
|
simprll |
|
| 46 |
32
|
adantrr |
|
| 47 |
2
|
odsubdvds |
|
| 48 |
45 46 42 47
|
syl3anc |
|
| 49 |
|
simprlr |
|
| 50 |
48 49
|
breqtrd |
|
| 51 |
3
|
adantr |
|
| 52 |
4
|
adantr |
|
| 53 |
1 2
|
odcl2 |
|
| 54 |
51 52 43 53
|
syl3anc |
|
| 55 |
|
dvdsprime |
|
| 56 |
5 54 55
|
syl2an2r |
|
| 57 |
50 56
|
mpbid |
|
| 58 |
57
|
ord |
|
| 59 |
|
eqid |
|
| 60 |
2 59 1
|
odeq1 |
|
| 61 |
3 43 60
|
syl2an2r |
|
| 62 |
58 61
|
sylibd |
|
| 63 |
62
|
necon1ad |
|
| 64 |
44 63
|
mpd |
|
| 65 |
43 64
|
jca |
|
| 66 |
65
|
expr |
|
| 67 |
40 66
|
biimtrid |
|
| 68 |
67
|
eximdv |
|
| 69 |
39 68
|
mpd |
|
| 70 |
|
df-rex |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
71
|
expr |
|
| 73 |
16 72
|
sylbid |
|
| 74 |
73
|
rexlimdva |
|
| 75 |
14 74
|
mpd |
|