Metamath Proof Explorer


Theorem odcau

Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime P contains an element of order P . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses odcau.x X = Base G
odcau.o O = od G
Assertion odcau G Grp X Fin P P X g X O g = P

Proof

Step Hyp Ref Expression
1 odcau.x X = Base G
2 odcau.o O = od G
3 simpl1 G Grp X Fin P P X G Grp
4 simpl2 G Grp X Fin P P X X Fin
5 simpl3 G Grp X Fin P P X P
6 1nn0 1 0
7 6 a1i G Grp X Fin P P X 1 0
8 prmnn P P
9 5 8 syl G Grp X Fin P P X P
10 9 nncnd G Grp X Fin P P X P
11 10 exp1d G Grp X Fin P P X P 1 = P
12 simpr G Grp X Fin P P X P X
13 11 12 eqbrtrd G Grp X Fin P P X P 1 X
14 1 3 4 5 7 13 sylow1 G Grp X Fin P P X s SubGrp G s = P 1
15 11 eqeq2d G Grp X Fin P P X s = P 1 s = P
16 15 adantr G Grp X Fin P P X s SubGrp G s = P 1 s = P
17 fvex 0 G V
18 hashsng 0 G V 0 G = 1
19 17 18 ax-mp 0 G = 1
20 simprr G Grp X Fin P P X s SubGrp G s = P s = P
21 5 adantr G Grp X Fin P P X s SubGrp G s = P P
22 prmuz2 P P 2
23 21 22 syl G Grp X Fin P P X s SubGrp G s = P P 2
24 20 23 eqeltrd G Grp X Fin P P X s SubGrp G s = P s 2
25 eluz2gt1 s 2 1 < s
26 24 25 syl G Grp X Fin P P X s SubGrp G s = P 1 < s
27 19 26 eqbrtrid G Grp X Fin P P X s SubGrp G s = P 0 G < s
28 snfi 0 G Fin
29 4 adantr G Grp X Fin P P X s SubGrp G s = P X Fin
30 1 subgss s SubGrp G s X
31 30 ad2antrl G Grp X Fin P P X s SubGrp G s = P s X
32 29 31 ssfid G Grp X Fin P P X s SubGrp G s = P s Fin
33 hashsdom 0 G Fin s Fin 0 G < s 0 G s
34 28 32 33 sylancr G Grp X Fin P P X s SubGrp G s = P 0 G < s 0 G s
35 27 34 mpbid G Grp X Fin P P X s SubGrp G s = P 0 G s
36 sdomdif 0 G s s 0 G
37 35 36 syl G Grp X Fin P P X s SubGrp G s = P s 0 G
38 n0 s 0 G g g s 0 G
39 37 38 sylib G Grp X Fin P P X s SubGrp G s = P g g s 0 G
40 eldifsn g s 0 G g s g 0 G
41 31 adantrr G Grp X Fin P P X s SubGrp G s = P g s g 0 G s X
42 simprrl G Grp X Fin P P X s SubGrp G s = P g s g 0 G g s
43 41 42 sseldd G Grp X Fin P P X s SubGrp G s = P g s g 0 G g X
44 simprrr G Grp X Fin P P X s SubGrp G s = P g s g 0 G g 0 G
45 simprll G Grp X Fin P P X s SubGrp G s = P g s g 0 G s SubGrp G
46 32 adantrr G Grp X Fin P P X s SubGrp G s = P g s g 0 G s Fin
47 2 odsubdvds s SubGrp G s Fin g s O g s
48 45 46 42 47 syl3anc G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g s
49 simprlr G Grp X Fin P P X s SubGrp G s = P g s g 0 G s = P
50 48 49 breqtrd G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g P
51 3 adantr G Grp X Fin P P X s SubGrp G s = P g s g 0 G G Grp
52 4 adantr G Grp X Fin P P X s SubGrp G s = P g s g 0 G X Fin
53 1 2 odcl2 G Grp X Fin g X O g
54 51 52 43 53 syl3anc G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g
55 dvdsprime P O g O g P O g = P O g = 1
56 5 54 55 syl2an2r G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g P O g = P O g = 1
57 50 56 mpbid G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g = P O g = 1
58 57 ord G Grp X Fin P P X s SubGrp G s = P g s g 0 G ¬ O g = P O g = 1
59 eqid 0 G = 0 G
60 2 59 1 odeq1 G Grp g X O g = 1 g = 0 G
61 3 43 60 syl2an2r G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g = 1 g = 0 G
62 58 61 sylibd G Grp X Fin P P X s SubGrp G s = P g s g 0 G ¬ O g = P g = 0 G
63 62 necon1ad G Grp X Fin P P X s SubGrp G s = P g s g 0 G g 0 G O g = P
64 44 63 mpd G Grp X Fin P P X s SubGrp G s = P g s g 0 G O g = P
65 43 64 jca G Grp X Fin P P X s SubGrp G s = P g s g 0 G g X O g = P
66 65 expr G Grp X Fin P P X s SubGrp G s = P g s g 0 G g X O g = P
67 40 66 syl5bi G Grp X Fin P P X s SubGrp G s = P g s 0 G g X O g = P
68 67 eximdv G Grp X Fin P P X s SubGrp G s = P g g s 0 G g g X O g = P
69 39 68 mpd G Grp X Fin P P X s SubGrp G s = P g g X O g = P
70 df-rex g X O g = P g g X O g = P
71 69 70 sylibr G Grp X Fin P P X s SubGrp G s = P g X O g = P
72 71 expr G Grp X Fin P P X s SubGrp G s = P g X O g = P
73 16 72 sylbid G Grp X Fin P P X s SubGrp G s = P 1 g X O g = P
74 73 rexlimdva G Grp X Fin P P X s SubGrp G s = P 1 g X O g = P
75 14 74 mpd G Grp X Fin P P X g X O g = P