Metamath Proof Explorer


Theorem odcl

Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
Assertion odcl A X O A 0

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 eqid G = G
4 eqid 0 G = 0 G
5 eqid y | y G A = 0 G = y | y G A = 0 G
6 1 3 4 2 5 odlem1 A X O A = 0 y | y G A = 0 G = O A y | y G A = 0 G
7 simpl O A = 0 y | y G A = 0 G = O A = 0
8 elrabi O A y | y G A = 0 G O A
9 7 8 orim12i O A = 0 y | y G A = 0 G = O A y | y G A = 0 G O A = 0 O A
10 6 9 syl A X O A = 0 O A
11 10 orcomd A X O A O A = 0
12 elnn0 O A 0 O A O A = 0
13 11 12 sylibr A X O A 0