Metamath Proof Explorer


Theorem odcl2

Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odcl2.1 X = Base G
odcl2.2 O = od G
Assertion odcl2 G Grp X Fin A X O A

Proof

Step Hyp Ref Expression
1 odcl2.1 X = Base G
2 odcl2.2 O = od G
3 1 2 odcl A X O A 0
4 3 adantl G Grp A X O A 0
5 elnn0 O A 0 O A O A = 0
6 4 5 sylib G Grp A X O A O A = 0
7 6 ord G Grp A X ¬ O A O A = 0
8 eqid G = G
9 eqid x x G A = x x G A
10 1 2 8 9 odinf G Grp A X O A = 0 ¬ ran x x G A Fin
11 1 2 8 9 odf1 G Grp A X O A = 0 x x G A : 1-1 X
12 11 biimp3a G Grp A X O A = 0 x x G A : 1-1 X
13 f1f x x G A : 1-1 X x x G A : X
14 frn x x G A : X ran x x G A X
15 ssfi X Fin ran x x G A X ran x x G A Fin
16 15 expcom ran x x G A X X Fin ran x x G A Fin
17 12 13 14 16 4syl G Grp A X O A = 0 X Fin ran x x G A Fin
18 10 17 mtod G Grp A X O A = 0 ¬ X Fin
19 18 3expia G Grp A X O A = 0 ¬ X Fin
20 7 19 syld G Grp A X ¬ O A ¬ X Fin
21 20 con4d G Grp A X X Fin O A
22 21 3impia G Grp A X X Fin O A
23 22 3com23 G Grp X Fin A X O A