| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
divides |
|
| 3 |
1 2
|
mpan |
|
| 4 |
3
|
notbid |
|
| 5 |
|
elznn0 |
|
| 6 |
|
odd2np1lem |
|
| 7 |
6
|
adantl |
|
| 8 |
|
peano2z |
|
| 9 |
|
znegcl |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
|
zcn |
|
| 13 |
|
2cn |
|
| 14 |
|
mulcl |
|
| 15 |
13 14
|
mpan |
|
| 16 |
|
peano2cn |
|
| 17 |
15 16
|
syl |
|
| 18 |
12 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simpl |
|
| 21 |
20
|
recnd |
|
| 22 |
|
negcon2 |
|
| 23 |
19 21 22
|
syl2anc |
|
| 24 |
|
eqcom |
|
| 25 |
13 12 14
|
sylancr |
|
| 26 |
|
ax-1cn |
|
| 27 |
13 26
|
mulcli |
|
| 28 |
|
addsubass |
|
| 29 |
27 26 28
|
mp3an23 |
|
| 30 |
25 29
|
syl |
|
| 31 |
|
2t1e2 |
|
| 32 |
31
|
oveq1i |
|
| 33 |
|
2m1e1 |
|
| 34 |
32 33
|
eqtri |
|
| 35 |
34
|
oveq2i |
|
| 36 |
30 35
|
eqtr2di |
|
| 37 |
|
adddi |
|
| 38 |
13 26 37
|
mp3an13 |
|
| 39 |
12 38
|
syl |
|
| 40 |
39
|
oveq1d |
|
| 41 |
36 40
|
eqtr4d |
|
| 42 |
41
|
negeqd |
|
| 43 |
8
|
zcnd |
|
| 44 |
|
mulneg2 |
|
| 45 |
13 43 44
|
sylancr |
|
| 46 |
45
|
oveq1d |
|
| 47 |
|
mulcl |
|
| 48 |
13 43 47
|
sylancr |
|
| 49 |
|
negsubdi |
|
| 50 |
48 26 49
|
sylancl |
|
| 51 |
46 50
|
eqtr4d |
|
| 52 |
42 51
|
eqtr4d |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
eqeq1d |
|
| 55 |
24 54
|
bitrid |
|
| 56 |
23 55
|
bitrd |
|
| 57 |
56
|
biimpa |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
oveq1d |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
60
|
rspcev |
|
| 62 |
11 57 61
|
syl2anc |
|
| 63 |
62
|
rexlimdva2 |
|
| 64 |
|
znegcl |
|
| 65 |
64
|
ad2antlr |
|
| 66 |
|
zcn |
|
| 67 |
|
mulcl |
|
| 68 |
66 13 67
|
sylancl |
|
| 69 |
|
recn |
|
| 70 |
|
negcon2 |
|
| 71 |
68 69 70
|
syl2anr |
|
| 72 |
|
eqcom |
|
| 73 |
|
mulneg1 |
|
| 74 |
66 13 73
|
sylancl |
|
| 75 |
74
|
adantl |
|
| 76 |
75
|
eqeq1d |
|
| 77 |
72 76
|
bitr4id |
|
| 78 |
71 77
|
bitrd |
|
| 79 |
78
|
biimpa |
|
| 80 |
|
oveq1 |
|
| 81 |
80
|
eqeq1d |
|
| 82 |
81
|
rspcev |
|
| 83 |
65 79 82
|
syl2anc |
|
| 84 |
83
|
rexlimdva2 |
|
| 85 |
63 84
|
orim12d |
|
| 86 |
|
odd2np1lem |
|
| 87 |
85 86
|
impel |
|
| 88 |
7 87
|
jaodan |
|
| 89 |
5 88
|
sylbi |
|
| 90 |
|
halfnz |
|
| 91 |
|
reeanv |
|
| 92 |
|
eqtr3 |
|
| 93 |
|
zcn |
|
| 94 |
|
mulcom |
|
| 95 |
93 13 94
|
sylancl |
|
| 96 |
95
|
eqeq2d |
|
| 97 |
96
|
adantl |
|
| 98 |
|
mulcl |
|
| 99 |
13 93 98
|
sylancr |
|
| 100 |
|
zcn |
|
| 101 |
|
mulcl |
|
| 102 |
13 100 101
|
sylancr |
|
| 103 |
|
subadd |
|
| 104 |
26 103
|
mp3an3 |
|
| 105 |
99 102 104
|
syl2anr |
|
| 106 |
|
subcl |
|
| 107 |
|
2cnne0 |
|
| 108 |
|
eqcom |
|
| 109 |
|
divmul |
|
| 110 |
108 109
|
bitrid |
|
| 111 |
26 107 110
|
mp3an13 |
|
| 112 |
106 111
|
syl |
|
| 113 |
112
|
ancoms |
|
| 114 |
|
subdi |
|
| 115 |
13 114
|
mp3an1 |
|
| 116 |
115
|
ancoms |
|
| 117 |
116
|
eqeq1d |
|
| 118 |
113 117
|
bitrd |
|
| 119 |
100 93 118
|
syl2an |
|
| 120 |
|
zsubcl |
|
| 121 |
|
eleq1 |
|
| 122 |
120 121
|
syl5ibcom |
|
| 123 |
122
|
ancoms |
|
| 124 |
119 123
|
sylbird |
|
| 125 |
105 124
|
sylbird |
|
| 126 |
97 125
|
sylbid |
|
| 127 |
92 126
|
syl5 |
|
| 128 |
127
|
rexlimivv |
|
| 129 |
91 128
|
sylbir |
|
| 130 |
90 129
|
mto |
|
| 131 |
|
pm5.17 |
|
| 132 |
|
bicom |
|
| 133 |
131 132
|
bitri |
|
| 134 |
89 130 133
|
sylanblc |
|
| 135 |
4 134
|
bitrd |
|