Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
divides |
|
3 |
1 2
|
mpan |
|
4 |
3
|
notbid |
|
5 |
|
elznn0 |
|
6 |
|
odd2np1lem |
|
7 |
6
|
adantl |
|
8 |
|
peano2z |
|
9 |
|
znegcl |
|
10 |
8 9
|
syl |
|
11 |
10
|
ad2antlr |
|
12 |
|
zcn |
|
13 |
|
2cn |
|
14 |
|
mulcl |
|
15 |
13 14
|
mpan |
|
16 |
|
peano2cn |
|
17 |
15 16
|
syl |
|
18 |
12 17
|
syl |
|
19 |
18
|
adantl |
|
20 |
|
simpl |
|
21 |
20
|
recnd |
|
22 |
|
negcon2 |
|
23 |
19 21 22
|
syl2anc |
|
24 |
|
eqcom |
|
25 |
13 12 14
|
sylancr |
|
26 |
|
ax-1cn |
|
27 |
13 26
|
mulcli |
|
28 |
|
addsubass |
|
29 |
27 26 28
|
mp3an23 |
|
30 |
25 29
|
syl |
|
31 |
|
2t1e2 |
|
32 |
31
|
oveq1i |
|
33 |
|
2m1e1 |
|
34 |
32 33
|
eqtri |
|
35 |
34
|
oveq2i |
|
36 |
30 35
|
eqtr2di |
|
37 |
|
adddi |
|
38 |
13 26 37
|
mp3an13 |
|
39 |
12 38
|
syl |
|
40 |
39
|
oveq1d |
|
41 |
36 40
|
eqtr4d |
|
42 |
41
|
negeqd |
|
43 |
8
|
zcnd |
|
44 |
|
mulneg2 |
|
45 |
13 43 44
|
sylancr |
|
46 |
45
|
oveq1d |
|
47 |
|
mulcl |
|
48 |
13 43 47
|
sylancr |
|
49 |
|
negsubdi |
|
50 |
48 26 49
|
sylancl |
|
51 |
46 50
|
eqtr4d |
|
52 |
42 51
|
eqtr4d |
|
53 |
52
|
adantl |
|
54 |
53
|
eqeq1d |
|
55 |
24 54
|
syl5bb |
|
56 |
23 55
|
bitrd |
|
57 |
56
|
biimpa |
|
58 |
|
oveq2 |
|
59 |
58
|
oveq1d |
|
60 |
59
|
eqeq1d |
|
61 |
60
|
rspcev |
|
62 |
11 57 61
|
syl2anc |
|
63 |
62
|
rexlimdva2 |
|
64 |
|
znegcl |
|
65 |
64
|
ad2antlr |
|
66 |
|
zcn |
|
67 |
|
mulcl |
|
68 |
66 13 67
|
sylancl |
|
69 |
|
recn |
|
70 |
|
negcon2 |
|
71 |
68 69 70
|
syl2anr |
|
72 |
|
eqcom |
|
73 |
|
mulneg1 |
|
74 |
66 13 73
|
sylancl |
|
75 |
74
|
adantl |
|
76 |
75
|
eqeq1d |
|
77 |
72 76
|
bitr4id |
|
78 |
71 77
|
bitrd |
|
79 |
78
|
biimpa |
|
80 |
|
oveq1 |
|
81 |
80
|
eqeq1d |
|
82 |
81
|
rspcev |
|
83 |
65 79 82
|
syl2anc |
|
84 |
83
|
rexlimdva2 |
|
85 |
63 84
|
orim12d |
|
86 |
|
odd2np1lem |
|
87 |
85 86
|
impel |
|
88 |
7 87
|
jaodan |
|
89 |
5 88
|
sylbi |
|
90 |
|
halfnz |
|
91 |
|
reeanv |
|
92 |
|
eqtr3 |
|
93 |
|
zcn |
|
94 |
|
mulcom |
|
95 |
93 13 94
|
sylancl |
|
96 |
95
|
eqeq2d |
|
97 |
96
|
adantl |
|
98 |
|
mulcl |
|
99 |
13 93 98
|
sylancr |
|
100 |
|
zcn |
|
101 |
|
mulcl |
|
102 |
13 100 101
|
sylancr |
|
103 |
|
subadd |
|
104 |
26 103
|
mp3an3 |
|
105 |
99 102 104
|
syl2anr |
|
106 |
|
subcl |
|
107 |
|
2cnne0 |
|
108 |
|
eqcom |
|
109 |
|
divmul |
|
110 |
108 109
|
syl5bb |
|
111 |
26 107 110
|
mp3an13 |
|
112 |
106 111
|
syl |
|
113 |
112
|
ancoms |
|
114 |
|
subdi |
|
115 |
13 114
|
mp3an1 |
|
116 |
115
|
ancoms |
|
117 |
116
|
eqeq1d |
|
118 |
113 117
|
bitrd |
|
119 |
100 93 118
|
syl2an |
|
120 |
|
zsubcl |
|
121 |
|
eleq1 |
|
122 |
120 121
|
syl5ibcom |
|
123 |
122
|
ancoms |
|
124 |
119 123
|
sylbird |
|
125 |
105 124
|
sylbird |
|
126 |
97 125
|
sylbid |
|
127 |
92 126
|
syl5 |
|
128 |
127
|
rexlimivv |
|
129 |
91 128
|
sylbir |
|
130 |
90 129
|
mto |
|
131 |
|
pm5.17 |
|
132 |
|
bicom |
|
133 |
131 132
|
bitri |
|
134 |
89 130 133
|
sylanblc |
|
135 |
4 134
|
bitrd |
|