Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|
2 |
1
|
rexbidv |
|
3 |
|
eqeq2 |
|
4 |
3
|
rexbidv |
|
5 |
2 4
|
orbi12d |
|
6 |
|
eqeq2 |
|
7 |
6
|
rexbidv |
|
8 |
|
oveq2 |
|
9 |
8
|
oveq1d |
|
10 |
9
|
eqeq1d |
|
11 |
10
|
cbvrexvw |
|
12 |
7 11
|
bitrdi |
|
13 |
|
eqeq2 |
|
14 |
13
|
rexbidv |
|
15 |
|
oveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
cbvrexvw |
|
18 |
14 17
|
bitrdi |
|
19 |
12 18
|
orbi12d |
|
20 |
|
eqeq2 |
|
21 |
20
|
rexbidv |
|
22 |
|
eqeq2 |
|
23 |
22
|
rexbidv |
|
24 |
21 23
|
orbi12d |
|
25 |
|
eqeq2 |
|
26 |
25
|
rexbidv |
|
27 |
|
eqeq2 |
|
28 |
27
|
rexbidv |
|
29 |
26 28
|
orbi12d |
|
30 |
|
0z |
|
31 |
|
2cn |
|
32 |
31
|
mul02i |
|
33 |
|
oveq1 |
|
34 |
33
|
eqeq1d |
|
35 |
34
|
rspcev |
|
36 |
30 32 35
|
mp2an |
|
37 |
36
|
olci |
|
38 |
|
orcom |
|
39 |
|
zcn |
|
40 |
|
mulcom |
|
41 |
39 31 40
|
sylancl |
|
42 |
41
|
adantl |
|
43 |
42
|
eqeq1d |
|
44 |
|
eqid |
|
45 |
|
oveq2 |
|
46 |
45
|
oveq1d |
|
47 |
46
|
eqeq1d |
|
48 |
47
|
rspcev |
|
49 |
44 48
|
mpan2 |
|
50 |
|
oveq1 |
|
51 |
50
|
eqeq2d |
|
52 |
51
|
rexbidv |
|
53 |
49 52
|
syl5ibcom |
|
54 |
53
|
adantl |
|
55 |
43 54
|
sylbid |
|
56 |
55
|
rexlimdva |
|
57 |
|
peano2z |
|
58 |
|
zcn |
|
59 |
|
mulcom |
|
60 |
31 59
|
mpan2 |
|
61 |
31
|
mulid2i |
|
62 |
61
|
a1i |
|
63 |
60 62
|
oveq12d |
|
64 |
|
df-2 |
|
65 |
64
|
oveq2i |
|
66 |
63 65
|
eqtrdi |
|
67 |
|
ax-1cn |
|
68 |
|
adddir |
|
69 |
67 31 68
|
mp3an23 |
|
70 |
|
mulcl |
|
71 |
31 70
|
mpan |
|
72 |
|
addass |
|
73 |
67 67 72
|
mp3an23 |
|
74 |
71 73
|
syl |
|
75 |
66 69 74
|
3eqtr4d |
|
76 |
58 75
|
syl |
|
77 |
76
|
adantl |
|
78 |
|
oveq1 |
|
79 |
78
|
eqeq1d |
|
80 |
79
|
rspcev |
|
81 |
57 77 80
|
syl2an2 |
|
82 |
|
oveq1 |
|
83 |
82
|
eqeq2d |
|
84 |
83
|
rexbidv |
|
85 |
81 84
|
syl5ibcom |
|
86 |
85
|
rexlimdva |
|
87 |
56 86
|
orim12d |
|
88 |
38 87
|
syl5bi |
|
89 |
5 19 24 29 37 88
|
nn0ind |
|