Metamath Proof Explorer


Theorem oddm1even

Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion oddm1even N ¬ 2 N 2 N 1

Proof

Step Hyp Ref Expression
1 simpl N n N
2 1 zcnd N n N
3 1cnd N n 1
4 2cnd N n 2
5 simpr N n n
6 5 zcnd N n n
7 4 6 mulcld N n 2 n
8 2 3 7 subadd2d N n N 1 = 2 n 2 n + 1 = N
9 eqcom N 1 = 2 n 2 n = N 1
10 4 6 mulcomd N n 2 n = n 2
11 10 eqeq1d N n 2 n = N 1 n 2 = N 1
12 9 11 syl5bb N n N 1 = 2 n n 2 = N 1
13 8 12 bitr3d N n 2 n + 1 = N n 2 = N 1
14 13 rexbidva N n 2 n + 1 = N n n 2 = N 1
15 odd2np1 N ¬ 2 N n 2 n + 1 = N
16 2z 2
17 peano2zm N N 1
18 divides 2 N 1 2 N 1 n n 2 = N 1
19 16 17 18 sylancr N 2 N 1 n n 2 = N 1
20 14 15 19 3bitr4d N ¬ 2 N 2 N 1