Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Pythagorean Triples
oddn2prm
Next ⟩
nnoddn2prmb
Metamath Proof Explorer
Ascii
Unicode
Theorem
oddn2prm
Description:
A prime not equal to
2
is odd.
(Contributed by
AV
, 28-Jun-2021)
Ref
Expression
Assertion
oddn2prm
⊢
N
∈
ℙ
∖
2
→
¬
2
∥
N
Proof
Step
Hyp
Ref
Expression
1
nnoddn2prm
⊢
N
∈
ℙ
∖
2
→
N
∈
ℕ
∧
¬
2
∥
N
2
1
simprd
⊢
N
∈
ℙ
∖
2
→
¬
2
∥
N