Metamath Proof Explorer


Theorem oddneven

Description: An odd number is not an even number. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion oddneven Z Odd ¬ Z Even

Proof

Step Hyp Ref Expression
1 isodd Z Odd Z Z + 1 2
2 zeo2 Z Z 2 ¬ Z + 1 2
3 2 biimpd Z Z 2 ¬ Z + 1 2
4 3 con2d Z Z + 1 2 ¬ Z 2
5 4 imp Z Z + 1 2 ¬ Z 2
6 1 5 sylbi Z Odd ¬ Z 2
7 6 olcd Z Odd ¬ Z ¬ Z 2
8 ianor ¬ Z Z 2 ¬ Z ¬ Z 2
9 iseven Z Even Z Z 2
10 8 9 xchnxbir ¬ Z Even ¬ Z ¬ Z 2
11 7 10 sylibr Z Odd ¬ Z Even