Metamath Proof Explorer


Theorem oddneven

Description: An odd number is not an even number. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion oddneven ZOdd¬ZEven

Proof

Step Hyp Ref Expression
1 isodd ZOddZZ+12
2 zeo2 ZZ2¬Z+12
3 2 biimpd ZZ2¬Z+12
4 3 con2d ZZ+12¬Z2
5 4 imp ZZ+12¬Z2
6 1 5 sylbi ZOdd¬Z2
7 6 olcd ZOdd¬Z¬Z2
8 ianor ¬ZZ2¬Z¬Z2
9 iseven ZEvenZZ2
10 8 9 xchnxbir ¬ZEven¬Z¬Z2
11 7 10 sylibr ZOdd¬ZEven