Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
2cnd |
|
3 |
|
elfznn |
|
4 |
3
|
nncnd |
|
5 |
2 4
|
mulcld |
|
6 |
5
|
adantl |
|
7 |
|
1cnd |
|
8 |
1 6 7
|
fsumsub |
|
9 |
|
arisum |
|
10 |
9
|
oveq2d |
|
11 |
|
2cnd |
|
12 |
4
|
adantl |
|
13 |
1 11 12
|
fsummulc2 |
|
14 |
|
nn0cn |
|
15 |
14
|
sqcld |
|
16 |
15 14
|
addcld |
|
17 |
|
2ne0 |
|
18 |
17
|
a1i |
|
19 |
16 11 18
|
divcan2d |
|
20 |
10 13 19
|
3eqtr3d |
|
21 |
|
id |
|
22 |
|
1cnd |
|
23 |
21 22
|
fz1sumconst |
|
24 |
14
|
mulridd |
|
25 |
23 24
|
eqtrd |
|
26 |
20 25
|
oveq12d |
|
27 |
15 14
|
pncand |
|
28 |
8 26 27
|
3eqtrd |
|