Metamath Proof Explorer


Theorem oddp1d2

Description: An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo and zeo2 . (Contributed by AV, 22-Jun-2021)

Ref Expression
Assertion oddp1d2 N ¬ 2 N N + 1 2

Proof

Step Hyp Ref Expression
1 oddp1even N ¬ 2 N 2 N + 1
2 2z 2
3 2ne0 2 0
4 peano2z N N + 1
5 dvdsval2 2 2 0 N + 1 2 N + 1 N + 1 2
6 2 3 4 5 mp3an12i N 2 N + 1 N + 1 2
7 1 6 bitrd N ¬ 2 N N + 1 2