Metamath Proof Explorer


Theorem oddp1even

Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion oddp1even N ¬ 2 N 2 N + 1

Proof

Step Hyp Ref Expression
1 oddm1even N ¬ 2 N 2 N 1
2 2z 2
3 peano2zm N N 1
4 dvdsadd 2 N 1 2 N 1 2 2 + N - 1
5 2 3 4 sylancr N 2 N 1 2 2 + N - 1
6 2cnd N 2
7 zcn N N
8 1cnd N 1
9 6 7 8 addsub12d N 2 + N - 1 = N + 2 - 1
10 2m1e1 2 1 = 1
11 10 oveq2i N + 2 - 1 = N + 1
12 9 11 eqtrdi N 2 + N - 1 = N + 1
13 12 breq2d N 2 2 + N - 1 2 N + 1
14 1 5 13 3bitrd N ¬ 2 N 2 N + 1