Metamath Proof Explorer


Theorem oddprm2

Description: Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypothesis hgt750leme.o O = z | ¬ 2 z
Assertion oddprm2 2 = O

Proof

Step Hyp Ref Expression
1 hgt750leme.o O = z | ¬ 2 z
2 ancom z O z z z O
3 prmz z z
4 1 rabeq2i z O z ¬ 2 z
5 4 baib z z O ¬ 2 z
6 3 5 syl z z O ¬ 2 z
7 6 pm5.32i z z O z ¬ 2 z
8 2 7 bitr2i z ¬ 2 z z O z
9 nnoddn2prmb z 2 z ¬ 2 z
10 elin z O z O z
11 8 9 10 3bitr4i z 2 z O
12 11 eqriv 2 = O