Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
The Ternary Goldbach Conjecture: Final Statement
oddprm2
Next ⟩
hgt750lemb
Metamath Proof Explorer
Ascii
Unicode
Theorem
oddprm2
Description:
Two ways to write the set of odd primes.
(Contributed by
Thierry Arnoux
, 27-Dec-2021)
Ref
Expression
Hypothesis
hgt750leme.o
⊢
O
=
z
∈
ℤ
|
¬
2
∥
z
Assertion
oddprm2
⊢
ℙ
∖
2
=
O
∩
ℙ
Proof
Step
Hyp
Ref
Expression
1
hgt750leme.o
⊢
O
=
z
∈
ℤ
|
¬
2
∥
z
2
ancom
⊢
z
∈
O
∧
z
∈
ℙ
↔
z
∈
ℙ
∧
z
∈
O
3
prmz
⊢
z
∈
ℙ
→
z
∈
ℤ
4
1
rabeq2i
⊢
z
∈
O
↔
z
∈
ℤ
∧
¬
2
∥
z
5
4
baib
⊢
z
∈
ℤ
→
z
∈
O
↔
¬
2
∥
z
6
3
5
syl
⊢
z
∈
ℙ
→
z
∈
O
↔
¬
2
∥
z
7
6
pm5.32i
⊢
z
∈
ℙ
∧
z
∈
O
↔
z
∈
ℙ
∧
¬
2
∥
z
8
2
7
bitr2i
⊢
z
∈
ℙ
∧
¬
2
∥
z
↔
z
∈
O
∧
z
∈
ℙ
9
nnoddn2prmb
⊢
z
∈
ℙ
∖
2
↔
z
∈
ℙ
∧
¬
2
∥
z
10
elin
⊢
z
∈
O
∩
ℙ
↔
z
∈
O
∧
z
∈
ℙ
11
8
9
10
3bitr4i
⊢
z
∈
ℙ
∖
2
↔
z
∈
O
∩
ℙ
12
11
eqriv
⊢
ℙ
∖
2
=
O
∩
ℙ