Metamath Proof Explorer


Theorem oddprmALTV

Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion oddprmALTV N 2 N Odd

Proof

Step Hyp Ref Expression
1 eldifsn N 2 N N 2
2 prmz N N
3 2 adantr N N 2 N
4 necom N 2 2 N
5 df-ne 2 N ¬ 2 = N
6 4 5 sylbb N 2 ¬ 2 = N
7 6 adantl N N 2 ¬ 2 = N
8 1ne2 1 2
9 8 nesymi ¬ 2 = 1
10 9 a1i N N 2 ¬ 2 = 1
11 ioran ¬ 2 = N 2 = 1 ¬ 2 = N ¬ 2 = 1
12 7 10 11 sylanbrc N N 2 ¬ 2 = N 2 = 1
13 2nn 2
14 13 a1i N 2 2
15 dvdsprime N 2 2 N 2 = N 2 = 1
16 14 15 sylan2 N N 2 2 N 2 = N 2 = 1
17 12 16 mtbird N N 2 ¬ 2 N
18 isodd3 N Odd N ¬ 2 N
19 3 17 18 sylanbrc N N 2 N Odd
20 1 19 sylbi N 2 N Odd