Step |
Hyp |
Ref |
Expression |
1 |
|
2prm |
|
2 |
|
pcndvds2 |
|
3 |
1 2
|
mpan |
|
4 |
|
pcdvds |
|
5 |
1 4
|
mpan |
|
6 |
|
2nn |
|
7 |
6
|
a1i |
|
8 |
1
|
a1i |
|
9 |
|
id |
|
10 |
8 9
|
pccld |
|
11 |
7 10
|
nnexpcld |
|
12 |
|
nndivdvds |
|
13 |
11 12
|
mpdan |
|
14 |
13
|
adantr |
|
15 |
|
elnn1uz2 |
|
16 |
|
nncn |
|
17 |
|
nncn |
|
18 |
|
nnne0 |
|
19 |
17 18
|
jca |
|
20 |
11 19
|
syl |
|
21 |
|
3anass |
|
22 |
16 20 21
|
sylanbrc |
|
23 |
22
|
adantr |
|
24 |
|
diveq1 |
|
25 |
23 24
|
syl |
|
26 |
10
|
adantr |
|
27 |
|
oveq2 |
|
28 |
27
|
eqeq2d |
|
29 |
28
|
adantl |
|
30 |
|
simpr |
|
31 |
26 29 30
|
rspcedvd |
|
32 |
31
|
ex |
|
33 |
|
pm2.24 |
|
34 |
32 33
|
syl6 |
|
35 |
34
|
adantr |
|
36 |
25 35
|
sylbid |
|
37 |
36
|
com12 |
|
38 |
|
exprmfct |
|
39 |
|
breq1 |
|
40 |
39
|
biimpcd |
|
41 |
40
|
adantl |
|
42 |
41
|
necon3bd |
|
43 |
42
|
ex |
|
44 |
|
prmnn |
|
45 |
5 13
|
mpbid |
|
46 |
|
nndivides |
|
47 |
44 45 46
|
syl2anr |
|
48 |
|
eqcom |
|
49 |
16
|
ad2antrr |
|
50 |
|
simpr |
|
51 |
44
|
ad2antlr |
|
52 |
50 51
|
nnmulcld |
|
53 |
52
|
nncnd |
|
54 |
11
|
ad2antrr |
|
55 |
54 19
|
syl |
|
56 |
|
divmul |
|
57 |
49 53 55 56
|
syl3anc |
|
58 |
48 57
|
syl5bb |
|
59 |
|
simpr |
|
60 |
59
|
adantr |
|
61 |
60
|
anim1i |
|
62 |
|
eldifsn |
|
63 |
61 62
|
sylibr |
|
64 |
63
|
adantr |
|
65 |
|
breq1 |
|
66 |
65
|
adantl |
|
67 |
54 50
|
nnmulcld |
|
68 |
67
|
nnzd |
|
69 |
44
|
nnzd |
|
70 |
69
|
ad2antlr |
|
71 |
68 70
|
jca |
|
72 |
71
|
adantr |
|
73 |
|
dvdsmul2 |
|
74 |
72 73
|
syl |
|
75 |
|
2nn0 |
|
76 |
75
|
a1i |
|
77 |
76 10
|
nn0expcld |
|
78 |
77
|
ad2antrr |
|
79 |
78
|
nn0cnd |
|
80 |
|
nncn |
|
81 |
80
|
adantl |
|
82 |
44
|
nncnd |
|
83 |
82
|
ad2antlr |
|
84 |
79 81 83
|
3jca |
|
85 |
84
|
adantr |
|
86 |
|
mulass |
|
87 |
85 86
|
syl |
|
88 |
74 87
|
breqtrd |
|
89 |
88
|
adantr |
|
90 |
|
breq2 |
|
91 |
90
|
adantl |
|
92 |
89 91
|
mpbid |
|
93 |
64 66 92
|
rspcedvd |
|
94 |
93
|
a1d |
|
95 |
94
|
exp31 |
|
96 |
95
|
com23 |
|
97 |
58 96
|
sylbid |
|
98 |
97
|
rexlimdva |
|
99 |
47 98
|
sylbid |
|
100 |
43 99
|
syldd |
|
101 |
100
|
rexlimdva |
|
102 |
101
|
com12 |
|
103 |
102
|
impd |
|
104 |
38 103
|
syl |
|
105 |
37 104
|
jaoi |
|
106 |
15 105
|
sylbi |
|
107 |
106
|
com12 |
|
108 |
14 107
|
sylbid |
|
109 |
108
|
ex |
|
110 |
3 5 109
|
mp2d |
|
111 |
110
|
imp |
|