Metamath Proof Explorer


Theorem oddprmge3

Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmge3 P 2 P 3

Proof

Step Hyp Ref Expression
1 eldifi P 2 P
2 oddprmgt2 P 2 2 < P
3 3z 3
4 3 a1i P 2 < P 3
5 prmz P P
6 5 adantr P 2 < P P
7 df-3 3 = 2 + 1
8 2z 2
9 zltp1le 2 P 2 < P 2 + 1 P
10 8 5 9 sylancr P 2 < P 2 + 1 P
11 10 biimpa P 2 < P 2 + 1 P
12 7 11 eqbrtrid P 2 < P 3 P
13 4 6 12 3jca P 2 < P 3 P 3 P
14 1 2 13 syl2anc P 2 3 P 3 P
15 eluz2 P 3 3 P 3 P
16 14 15 sylibr P 2 P 3