Metamath Proof Explorer


Theorem oddprmgt2

Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmgt2 P 2 2 < P

Proof

Step Hyp Ref Expression
1 eldifsn P 2 P P 2
2 prmuz2 P P 2
3 eluz2 P 2 2 P 2 P
4 zre 2 2
5 zre P P
6 ltlen 2 P 2 < P 2 P P 2
7 4 5 6 syl2an 2 P 2 < P 2 P P 2
8 7 biimprd 2 P 2 P P 2 2 < P
9 8 exp4b 2 P 2 P P 2 2 < P
10 9 3imp 2 P 2 P P 2 2 < P
11 3 10 sylbi P 2 P 2 2 < P
12 2 11 syl P P 2 2 < P
13 12 imp P P 2 2 < P
14 1 13 sylbi P 2 2 < P