Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Elementary properties
oddprmgt2
Next ⟩
oddprmge3
Metamath Proof Explorer
Ascii
Unicode
Theorem
oddprmgt2
Description:
An odd prime is greater than 2.
(Contributed by
AV
, 20-Aug-2021)
Ref
Expression
Assertion
oddprmgt2
⊢
P
∈
ℙ
∖
2
→
2
<
P
Proof
Step
Hyp
Ref
Expression
1
eldifsn
⊢
P
∈
ℙ
∖
2
↔
P
∈
ℙ
∧
P
≠
2
2
prmuz2
⊢
P
∈
ℙ
→
P
∈
ℤ
≥
2
3
eluz2
⊢
P
∈
ℤ
≥
2
↔
2
∈
ℤ
∧
P
∈
ℤ
∧
2
≤
P
4
zre
⊢
2
∈
ℤ
→
2
∈
ℝ
5
zre
⊢
P
∈
ℤ
→
P
∈
ℝ
6
ltlen
⊢
2
∈
ℝ
∧
P
∈
ℝ
→
2
<
P
↔
2
≤
P
∧
P
≠
2
7
4
5
6
syl2an
⊢
2
∈
ℤ
∧
P
∈
ℤ
→
2
<
P
↔
2
≤
P
∧
P
≠
2
8
7
biimprd
⊢
2
∈
ℤ
∧
P
∈
ℤ
→
2
≤
P
∧
P
≠
2
→
2
<
P
9
8
exp4b
⊢
2
∈
ℤ
→
P
∈
ℤ
→
2
≤
P
→
P
≠
2
→
2
<
P
10
9
3imp
⊢
2
∈
ℤ
∧
P
∈
ℤ
∧
2
≤
P
→
P
≠
2
→
2
<
P
11
3
10
sylbi
⊢
P
∈
ℤ
≥
2
→
P
≠
2
→
2
<
P
12
2
11
syl
⊢
P
∈
ℙ
→
P
≠
2
→
2
<
P
13
12
imp
⊢
P
∈
ℙ
∧
P
≠
2
→
2
<
P
14
1
13
sylbi
⊢
P
∈
ℙ
∖
2
→
2
<
P