Metamath Proof Explorer


Theorem oddprmne2

Description: Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021)

Ref Expression
Assertion oddprmne2 P P Odd P 2

Proof

Step Hyp Ref Expression
1 prmz P P
2 zeo2ALTV P P Even ¬ P Odd
3 1 2 syl P P Even ¬ P Odd
4 evenprm2 P P Even P = 2
5 3 4 bitr3d P ¬ P Odd P = 2
6 nne ¬ P 2 P = 2
7 5 6 bitr4di P ¬ P Odd ¬ P 2
8 7 con4bid P P Odd P 2
9 8 pm5.32i P P Odd P P 2
10 eldifsn P 2 P P 2
11 9 10 bitr4i P P Odd P 2