Metamath Proof Explorer


Theorem oddpwdc

Description: Lemma for eulerpart . The function F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017)

Ref Expression
Hypotheses oddpwdc.j J = z | ¬ 2 z
oddpwdc.f F = x J , y 0 2 y x
Assertion oddpwdc F : J × 0 1-1 onto

Proof

Step Hyp Ref Expression
1 oddpwdc.j J = z | ¬ 2 z
2 oddpwdc.f F = x J , y 0 2 y x
3 2nn 2
4 3 a1i y 0 x J 2
5 simpl y 0 x J y 0
6 4 5 nnexpcld y 0 x J 2 y
7 ssrab2 z | ¬ 2 z
8 1 7 eqsstri J
9 simpr y 0 x J x J
10 8 9 sselid y 0 x J x
11 6 10 nnmulcld y 0 x J 2 y x
12 11 ancoms x J y 0 2 y x
13 12 adantl x J y 0 2 y x
14 id a a
15 3 a1i a 2
16 nn0ssre 0
17 ltso < Or
18 soss 0 < Or < Or 0
19 16 17 18 mp2 < Or 0
20 19 a1i a < Or 0
21 0zd a 0
22 ssrab2 k 0 | 2 k a 0
23 22 a1i a k 0 | 2 k a 0
24 nnz a a
25 oveq2 k = n 2 k = 2 n
26 25 breq1d k = n 2 k a 2 n a
27 26 elrab n k 0 | 2 k a n 0 2 n a
28 simprl a n 0 2 n a n 0
29 28 nn0red a n 0 2 n a n
30 3 a1i a n 0 2 n a 2
31 30 28 nnexpcld a n 0 2 n a 2 n
32 31 nnred a n 0 2 n a 2 n
33 simpl a n 0 2 n a a
34 33 nnred a n 0 2 n a a
35 2re 2
36 35 leidi 2 2
37 nexple n 0 2 2 2 n 2 n
38 35 36 37 mp3an23 n 0 n 2 n
39 38 ad2antrl a n 0 2 n a n 2 n
40 31 nnzd a n 0 2 n a 2 n
41 simprr a n 0 2 n a 2 n a
42 dvdsle 2 n a 2 n a 2 n a
43 42 imp 2 n a 2 n a 2 n a
44 40 33 41 43 syl21anc a n 0 2 n a 2 n a
45 29 32 34 39 44 letrd a n 0 2 n a n a
46 27 45 sylan2b a n k 0 | 2 k a n a
47 46 ralrimiva a n k 0 | 2 k a n a
48 brralrspcev a n k 0 | 2 k a n a m n k 0 | 2 k a n m
49 24 47 48 syl2anc a m n k 0 | 2 k a n m
50 nn0uz 0 = 0
51 50 uzsupss 0 k 0 | 2 k a 0 m n k 0 | 2 k a n m m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
52 21 23 49 51 syl3anc a m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
53 20 52 supcl a sup k 0 | 2 k a 0 < 0
54 15 53 nnexpcld a 2 sup k 0 | 2 k a 0 <
55 fzfi 0 a Fin
56 0zd a n k 0 | 2 k a 0
57 24 adantr a n k 0 | 2 k a a
58 27 28 sylan2b a n k 0 | 2 k a n 0
59 58 nn0zd a n k 0 | 2 k a n
60 58 nn0ge0d a n k 0 | 2 k a 0 n
61 56 57 59 60 46 elfzd a n k 0 | 2 k a n 0 a
62 61 ex a n k 0 | 2 k a n 0 a
63 62 ssrdv a k 0 | 2 k a 0 a
64 ssfi 0 a Fin k 0 | 2 k a 0 a k 0 | 2 k a Fin
65 55 63 64 sylancr a k 0 | 2 k a Fin
66 0nn0 0 0
67 66 a1i a 0 0
68 2cn 2
69 exp0 2 2 0 = 1
70 68 69 ax-mp 2 0 = 1
71 1dvds a 1 a
72 24 71 syl a 1 a
73 70 72 eqbrtrid a 2 0 a
74 oveq2 k = 0 2 k = 2 0
75 74 breq1d k = 0 2 k a 2 0 a
76 75 elrab 0 k 0 | 2 k a 0 0 2 0 a
77 67 73 76 sylanbrc a 0 k 0 | 2 k a
78 77 ne0d a k 0 | 2 k a
79 fisupcl < Or 0 k 0 | 2 k a Fin k 0 | 2 k a k 0 | 2 k a 0 sup k 0 | 2 k a 0 < k 0 | 2 k a
80 20 65 78 23 79 syl13anc a sup k 0 | 2 k a 0 < k 0 | 2 k a
81 oveq2 k = l 2 k = 2 l
82 81 breq1d k = l 2 k a 2 l a
83 82 cbvrabv k 0 | 2 k a = l 0 | 2 l a
84 80 83 eleqtrdi a sup k 0 | 2 k a 0 < l 0 | 2 l a
85 oveq2 l = sup k 0 | 2 k a 0 < 2 l = 2 sup k 0 | 2 k a 0 <
86 85 breq1d l = sup k 0 | 2 k a 0 < 2 l a 2 sup k 0 | 2 k a 0 < a
87 86 elrab sup k 0 | 2 k a 0 < l 0 | 2 l a sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < a
88 84 87 sylib a sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < a
89 88 simprd a 2 sup k 0 | 2 k a 0 < a
90 nndivdvds a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a a 2 sup k 0 | 2 k a 0 <
91 90 biimpa a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a a 2 sup k 0 | 2 k a 0 <
92 14 54 89 91 syl21anc a a 2 sup k 0 | 2 k a 0 <
93 1nn0 1 0
94 93 a1i a 1 0
95 53 94 nn0addcld a sup k 0 | 2 k a 0 < + 1 0
96 53 nn0red a sup k 0 | 2 k a 0 <
97 96 ltp1d a sup k 0 | 2 k a 0 < < sup k 0 | 2 k a 0 < + 1
98 20 52 supub a sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a ¬ sup k 0 | 2 k a 0 < < sup k 0 | 2 k a 0 < + 1
99 97 98 mt2d a ¬ sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a
100 83 eleq2i sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a
101 99 100 sylnib a ¬ sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a
102 oveq2 l = sup k 0 | 2 k a 0 < + 1 2 l = 2 sup k 0 | 2 k a 0 < + 1
103 102 breq1d l = sup k 0 | 2 k a 0 < + 1 2 l a 2 sup k 0 | 2 k a 0 < + 1 a
104 103 elrab sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
105 101 104 sylnib a ¬ sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
106 imnan sup k 0 | 2 k a 0 < + 1 0 ¬ 2 sup k 0 | 2 k a 0 < + 1 a ¬ sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
107 105 106 sylibr a sup k 0 | 2 k a 0 < + 1 0 ¬ 2 sup k 0 | 2 k a 0 < + 1 a
108 95 107 mpd a ¬ 2 sup k 0 | 2 k a 0 < + 1 a
109 expp1 2 sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < + 1 = 2 sup k 0 | 2 k a 0 < 2
110 68 53 109 sylancr a 2 sup k 0 | 2 k a 0 < + 1 = 2 sup k 0 | 2 k a 0 < 2
111 110 breq1d a 2 sup k 0 | 2 k a 0 < + 1 a 2 sup k 0 | 2 k a 0 < 2 a
112 108 111 mtbid a ¬ 2 sup k 0 | 2 k a 0 < 2 a
113 nncn a a
114 54 nncnd a 2 sup k 0 | 2 k a 0 <
115 54 nnne0d a 2 sup k 0 | 2 k a 0 < 0
116 113 114 115 divcan2d a 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < = a
117 116 eqcomd a a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
118 117 breq2d a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
119 15 nnzd a 2
120 92 nnzd a a 2 sup k 0 | 2 k a 0 <
121 54 nnzd a 2 sup k 0 | 2 k a 0 <
122 dvdscmulr 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 <
123 119 120 121 115 122 syl112anc a 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 <
124 118 123 bitrd a 2 sup k 0 | 2 k a 0 < 2 a 2 a 2 sup k 0 | 2 k a 0 <
125 112 124 mtbid a ¬ 2 a 2 sup k 0 | 2 k a 0 <
126 breq2 z = a 2 sup k 0 | 2 k a 0 < 2 z 2 a 2 sup k 0 | 2 k a 0 <
127 126 notbid z = a 2 sup k 0 | 2 k a 0 < ¬ 2 z ¬ 2 a 2 sup k 0 | 2 k a 0 <
128 127 1 elrab2 a 2 sup k 0 | 2 k a 0 < J a 2 sup k 0 | 2 k a 0 < ¬ 2 a 2 sup k 0 | 2 k a 0 <
129 92 125 128 sylanbrc a a 2 sup k 0 | 2 k a 0 < J
130 129 53 jca a a 2 sup k 0 | 2 k a 0 < J sup k 0 | 2 k a 0 < 0
131 130 adantl a a 2 sup k 0 | 2 k a 0 < J sup k 0 | 2 k a 0 < 0
132 simpr x J y 0 a = 2 y x a = 2 y x
133 3 a1i x J y 0 a = 2 y x 2
134 simplr x J y 0 a = 2 y x y 0
135 133 134 nnexpcld x J y 0 a = 2 y x 2 y
136 8 sseli x J x
137 136 ad2antrr x J y 0 a = 2 y x x
138 135 137 nnmulcld x J y 0 a = 2 y x 2 y x
139 132 138 eqeltrd x J y 0 a = 2 y x a
140 simplll x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x J
141 breq2 z = x 2 z 2 x
142 141 notbid z = x ¬ 2 z ¬ 2 x
143 142 1 elrab2 x J x ¬ 2 x
144 143 simprbi x J ¬ 2 x
145 2z 2
146 134 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y 0
147 146 nn0zd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y
148 19 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < < Or 0
149 139 52 syl x J y 0 a = 2 y x m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
150 149 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
151 148 150 supcl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < 0
152 151 nn0zd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 <
153 simpr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 <
154 znnsub y sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
155 154 biimpa y sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
156 147 152 153 155 syl21anc x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
157 iddvdsexp 2 sup k 0 | 2 k a 0 < y 2 2 sup k 0 | 2 k a 0 < y
158 145 156 157 sylancr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < y
159 145 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2
160 139 120 syl x J y 0 a = 2 y x a 2 sup k 0 | 2 k a 0 <
161 160 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
162 156 nnnn0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y 0
163 zexpcl 2 sup k 0 | 2 k a 0 < y 0 2 sup k 0 | 2 k a 0 < y
164 145 162 163 sylancr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
165 dvdsmultr2 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y 2 2 sup k 0 | 2 k a 0 < y 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
166 159 161 164 165 syl3anc x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < y 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
167 158 166 mpd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
168 137 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x
169 168 nncnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x
170 2cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2
171 170 162 expcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
172 139 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a
173 172 nncnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a
174 172 114 syl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 <
175 2ne0 2 0
176 175 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 0
177 170 176 152 expne0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 0
178 173 174 177 divcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
179 171 178 mulcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
180 170 146 expcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y
181 170 176 147 expne0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y 0
182 172 117 syl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
183 simplr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a = 2 y x
184 146 nn0cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y
185 151 nn0cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 <
186 184 185 pncan3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y + sup k 0 | 2 k a 0 < - y = sup k 0 | 2 k a 0 <
187 186 oveq2d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y + sup k 0 | 2 k a 0 < - y = 2 sup k 0 | 2 k a 0 <
188 170 162 146 expaddd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y + sup k 0 | 2 k a 0 < - y = 2 y 2 sup k 0 | 2 k a 0 < y
189 187 188 eqtr3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y
190 189 oveq1d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
191 182 183 190 3eqtr3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y x = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
192 180 171 178 mulassd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
193 191 192 eqtrd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y x = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
194 169 179 180 181 193 mulcanad x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x = 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
195 178 171 mulcomd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y = 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
196 194 195 eqtr4d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
197 167 196 breqtrrd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 x
198 144 197 nsyl3 x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < ¬ x J
199 140 198 pm2.65da x J y 0 a = 2 y x ¬ y < sup k 0 | 2 k a 0 <
200 137 nnzd x J y 0 a = 2 y x x
201 135 nnzd x J y 0 a = 2 y x 2 y
202 139 nnzd x J y 0 a = 2 y x a
203 135 nncnd x J y 0 a = 2 y x 2 y
204 137 nncnd x J y 0 a = 2 y x x
205 203 204 mulcomd x J y 0 a = 2 y x 2 y x = x 2 y
206 132 205 eqtr2d x J y 0 a = 2 y x x 2 y = a
207 dvds0lem x 2 y a x 2 y = a 2 y a
208 200 201 202 206 207 syl31anc x J y 0 a = 2 y x 2 y a
209 oveq2 k = y 2 k = 2 y
210 209 breq1d k = y 2 k a 2 y a
211 210 elrab y k 0 | 2 k a y 0 2 y a
212 134 208 211 sylanbrc x J y 0 a = 2 y x y k 0 | 2 k a
213 19 a1i x J y 0 a = 2 y x < Or 0
214 213 149 supub x J y 0 a = 2 y x y k 0 | 2 k a ¬ sup k 0 | 2 k a 0 < < y
215 212 214 mpd x J y 0 a = 2 y x ¬ sup k 0 | 2 k a 0 < < y
216 134 nn0red x J y 0 a = 2 y x y
217 139 96 syl x J y 0 a = 2 y x sup k 0 | 2 k a 0 <
218 216 217 lttri3d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < ¬ y < sup k 0 | 2 k a 0 < ¬ sup k 0 | 2 k a 0 < < y
219 199 215 218 mpbir2and x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 <
220 simplr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a = 2 y x
221 139 adantr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a
222 221 nncnd x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a
223 137 adantr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x
224 223 nncnd x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x
225 nnexpcl 2 y 0 2 y
226 3 225 mpan y 0 2 y
227 226 nncnd y 0 2 y
228 226 nnne0d y 0 2 y 0
229 227 228 jca y 0 2 y 2 y 0
230 229 ad3antlr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < 2 y 2 y 0
231 divmul2 a x 2 y 2 y 0 a 2 y = x a = 2 y x
232 222 224 230 231 syl3anc x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = x a = 2 y x
233 220 232 mpbird x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = x
234 simpr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
235 234 oveq2d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < 2 y = 2 sup k 0 | 2 k a 0 <
236 235 oveq2d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = a 2 sup k 0 | 2 k a 0 <
237 233 236 eqtr3d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
238 237 ex x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
239 219 238 jcai x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
240 239 ancomd x J y 0 a = 2 y x x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
241 139 240 jca x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
242 simprl a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
243 129 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < J
244 242 243 eqeltrd a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x J
245 simprr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
246 53 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < 0
247 245 246 eqeltrd a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < y 0
248 117 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
249 245 oveq2d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < 2 y = 2 sup k 0 | 2 k a 0 <
250 249 242 oveq12d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < 2 y x = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
251 248 250 eqtr4d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a = 2 y x
252 244 247 251 jca31 a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x J y 0 a = 2 y x
253 241 252 impbii x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
254 253 a1i x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
255 2 13 131 254 f1od2 F : J × 0 1-1 onto
256 255 mptru F : J × 0 1-1 onto