Metamath Proof Explorer


Theorem oddpwdcv

Description: Lemma for eulerpart : value of the F function. (Contributed by Thierry Arnoux, 9-Sep-2017)

Ref Expression
Hypotheses oddpwdc.j J = z | ¬ 2 z
oddpwdc.f F = x J , y 0 2 y x
Assertion oddpwdcv W J × 0 F W = 2 2 nd W 1 st W

Proof

Step Hyp Ref Expression
1 oddpwdc.j J = z | ¬ 2 z
2 oddpwdc.f F = x J , y 0 2 y x
3 1st2nd2 W J × 0 W = 1 st W 2 nd W
4 3 fveq2d W J × 0 F W = F 1 st W 2 nd W
5 df-ov 1 st W F 2 nd W = F 1 st W 2 nd W
6 5 a1i W J × 0 1 st W F 2 nd W = F 1 st W 2 nd W
7 elxp6 W J × 0 W = 1 st W 2 nd W 1 st W J 2 nd W 0
8 7 simprbi W J × 0 1 st W J 2 nd W 0
9 oveq2 x = 1 st W 2 y x = 2 y 1 st W
10 oveq2 y = 2 nd W 2 y = 2 2 nd W
11 10 oveq1d y = 2 nd W 2 y 1 st W = 2 2 nd W 1 st W
12 ovex 2 2 nd W 1 st W V
13 9 11 2 12 ovmpo 1 st W J 2 nd W 0 1 st W F 2 nd W = 2 2 nd W 1 st W
14 8 13 syl W J × 0 1 st W F 2 nd W = 2 2 nd W 1 st W
15 4 6 14 3eqtr2d W J × 0 F W = 2 2 nd W 1 st W