Metamath Proof Explorer


Theorem oddpwp1fsum

Description: An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)

Ref Expression
Hypotheses pwp1fsum.a φ A
pwp1fsum.n φ N
oddpwp1fsum.n φ ¬ 2 N
Assertion oddpwp1fsum φ A N + 1 = A + 1 k = 0 N 1 1 k A k

Proof

Step Hyp Ref Expression
1 pwp1fsum.a φ A
2 pwp1fsum.n φ N
3 oddpwp1fsum.n φ ¬ 2 N
4 2 nnzd φ N
5 oddm1even N ¬ 2 N 2 N 1
6 4 5 syl φ ¬ 2 N 2 N 1
7 3 6 mpbid φ 2 N 1
8 m1expe 2 N 1 1 N 1 = 1
9 7 8 syl φ 1 N 1 = 1
10 9 oveq1d φ 1 N 1 A N = 1 A N
11 10 oveq1d φ 1 N 1 A N + 1 = 1 A N + 1
12 1 2 pwp1fsum φ 1 N 1 A N + 1 = A + 1 k = 0 N 1 1 k A k
13 2 nnnn0d φ N 0
14 1 13 expcld φ A N
15 14 mulid2d φ 1 A N = A N
16 15 oveq1d φ 1 A N + 1 = A N + 1
17 11 12 16 3eqtr3rd φ A N + 1 = A + 1 k = 0 N 1 1 k A k