Metamath Proof Explorer


Theorem oddsumodd

Description: If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021)

Ref Expression
Hypotheses evensumodd.a φ A Fin
evensumodd.b φ k A B
evensumodd.o φ k A ¬ 2 B
oddsumodd.a φ ¬ 2 A
Assertion oddsumodd φ ¬ 2 k A B

Proof

Step Hyp Ref Expression
1 evensumodd.a φ A Fin
2 evensumodd.b φ k A B
3 evensumodd.o φ k A ¬ 2 B
4 oddsumodd.a φ ¬ 2 A
5 1 2 3 sumodd φ 2 A 2 k A B
6 4 5 mtbid φ ¬ 2 k A B