Metamath Proof Explorer


Theorem oddvds

Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
odid.3 · ˙ = G
odid.4 0 ˙ = 0 G
Assertion oddvds G Grp A X N O A N N · ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 odid.3 · ˙ = G
4 odid.4 0 ˙ = 0 G
5 simpr G Grp A X N O A O A
6 simpl3 G Grp A X N O A N
7 dvdsval3 O A N O A N N mod O A = 0
8 5 6 7 syl2anc G Grp A X N O A O A N N mod O A = 0
9 simpl2 G Grp A X N O A A X
10 1 4 3 mulg0 A X 0 · ˙ A = 0 ˙
11 9 10 syl G Grp A X N O A 0 · ˙ A = 0 ˙
12 oveq1 N mod O A = 0 N mod O A · ˙ A = 0 · ˙ A
13 12 eqeq1d N mod O A = 0 N mod O A · ˙ A = 0 ˙ 0 · ˙ A = 0 ˙
14 11 13 syl5ibrcom G Grp A X N O A N mod O A = 0 N mod O A · ˙ A = 0 ˙
15 6 zred G Grp A X N O A N
16 5 nnrpd G Grp A X N O A O A +
17 modlt N O A + N mod O A < O A
18 15 16 17 syl2anc G Grp A X N O A N mod O A < O A
19 6 5 zmodcld G Grp A X N O A N mod O A 0
20 19 nn0red G Grp A X N O A N mod O A
21 5 nnred G Grp A X N O A O A
22 20 21 ltnled G Grp A X N O A N mod O A < O A ¬ O A N mod O A
23 18 22 mpbid G Grp A X N O A ¬ O A N mod O A
24 1 2 3 4 odlem2 A X N mod O A N mod O A · ˙ A = 0 ˙ O A 1 N mod O A
25 elfzle2 O A 1 N mod O A O A N mod O A
26 24 25 syl A X N mod O A N mod O A · ˙ A = 0 ˙ O A N mod O A
27 26 3com23 A X N mod O A · ˙ A = 0 ˙ N mod O A O A N mod O A
28 27 3expia A X N mod O A · ˙ A = 0 ˙ N mod O A O A N mod O A
29 28 con3d A X N mod O A · ˙ A = 0 ˙ ¬ O A N mod O A ¬ N mod O A
30 29 impancom A X ¬ O A N mod O A N mod O A · ˙ A = 0 ˙ ¬ N mod O A
31 9 23 30 syl2anc G Grp A X N O A N mod O A · ˙ A = 0 ˙ ¬ N mod O A
32 elnn0 N mod O A 0 N mod O A N mod O A = 0
33 19 32 sylib G Grp A X N O A N mod O A N mod O A = 0
34 33 ord G Grp A X N O A ¬ N mod O A N mod O A = 0
35 31 34 syld G Grp A X N O A N mod O A · ˙ A = 0 ˙ N mod O A = 0
36 14 35 impbid G Grp A X N O A N mod O A = 0 N mod O A · ˙ A = 0 ˙
37 1 2 3 4 odmod G Grp A X N O A N mod O A · ˙ A = N · ˙ A
38 37 eqeq1d G Grp A X N O A N mod O A · ˙ A = 0 ˙ N · ˙ A = 0 ˙
39 8 36 38 3bitrd G Grp A X N O A O A N N · ˙ A = 0 ˙
40 simpr G Grp A X N O A = 0 O A = 0
41 40 breq1d G Grp A X N O A = 0 O A N 0 N
42 simpl3 G Grp A X N O A = 0 N
43 0dvds N 0 N N = 0
44 42 43 syl G Grp A X N O A = 0 0 N N = 0
45 simpl2 G Grp A X N O A = 0 A X
46 45 10 syl G Grp A X N O A = 0 0 · ˙ A = 0 ˙
47 oveq1 N = 0 N · ˙ A = 0 · ˙ A
48 47 eqeq1d N = 0 N · ˙ A = 0 ˙ 0 · ˙ A = 0 ˙
49 46 48 syl5ibrcom G Grp A X N O A = 0 N = 0 N · ˙ A = 0 ˙
50 1 2 3 4 odnncl G Grp A X N N 0 N · ˙ A = 0 ˙ O A
51 50 nnne0d G Grp A X N N 0 N · ˙ A = 0 ˙ O A 0
52 51 expr G Grp A X N N 0 N · ˙ A = 0 ˙ O A 0
53 52 impancom G Grp A X N N · ˙ A = 0 ˙ N 0 O A 0
54 53 necon4d G Grp A X N N · ˙ A = 0 ˙ O A = 0 N = 0
55 54 impancom G Grp A X N O A = 0 N · ˙ A = 0 ˙ N = 0
56 49 55 impbid G Grp A X N O A = 0 N = 0 N · ˙ A = 0 ˙
57 41 44 56 3bitrd G Grp A X N O A = 0 O A N N · ˙ A = 0 ˙
58 1 2 odcl A X O A 0
59 58 3ad2ant2 G Grp A X N O A 0
60 elnn0 O A 0 O A O A = 0
61 59 60 sylib G Grp A X N O A O A = 0
62 39 57 61 mpjaodan G Grp A X N O A N N · ˙ A = 0 ˙