Metamath Proof Explorer


Theorem oddvds2

Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odcl2.1 X = Base G
odcl2.2 O = od G
Assertion oddvds2 G Grp X Fin A X O A X

Proof

Step Hyp Ref Expression
1 odcl2.1 X = Base G
2 odcl2.2 O = od G
3 eqid G = G
4 eqid x x G A = x x G A
5 1 2 3 4 dfod2 G Grp A X O A = if ran x x G A Fin ran x x G A 0
6 5 3adant2 G Grp X Fin A X O A = if ran x x G A Fin ran x x G A 0
7 simp2 G Grp X Fin A X X Fin
8 1 3 4 cycsubgcl G Grp A X ran x x G A SubGrp G A ran x x G A
9 8 3adant2 G Grp X Fin A X ran x x G A SubGrp G A ran x x G A
10 9 simpld G Grp X Fin A X ran x x G A SubGrp G
11 1 subgss ran x x G A SubGrp G ran x x G A X
12 10 11 syl G Grp X Fin A X ran x x G A X
13 7 12 ssfid G Grp X Fin A X ran x x G A Fin
14 13 iftrued G Grp X Fin A X if ran x x G A Fin ran x x G A 0 = ran x x G A
15 6 14 eqtrd G Grp X Fin A X O A = ran x x G A
16 1 lagsubg ran x x G A SubGrp G X Fin ran x x G A X
17 10 7 16 syl2anc G Grp X Fin A X ran x x G A X
18 15 17 eqbrtrd G Grp X Fin A X O A X