Step |
Hyp |
Ref |
Expression |
1 |
|
torsubg.1 |
|
2 |
|
oddvdssubg.1 |
|
3 |
|
ssrab2 |
|
4 |
3
|
a1i |
|
5 |
|
fveq2 |
|
6 |
5
|
breq1d |
|
7 |
|
ablgrp |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
2 9
|
grpidcl |
|
11 |
8 10
|
syl |
|
12 |
1 9
|
od1 |
|
13 |
8 12
|
syl |
|
14 |
|
1dvds |
|
15 |
14
|
adantl |
|
16 |
13 15
|
eqbrtrd |
|
17 |
6 11 16
|
elrabd |
|
18 |
17
|
ne0d |
|
19 |
|
fveq2 |
|
20 |
19
|
breq1d |
|
21 |
20
|
elrab |
|
22 |
|
fveq2 |
|
23 |
22
|
breq1d |
|
24 |
23
|
elrab |
|
25 |
|
fveq2 |
|
26 |
25
|
breq1d |
|
27 |
8
|
adantr |
|
28 |
27
|
adantr |
|
29 |
|
simprl |
|
30 |
29
|
adantr |
|
31 |
|
simprl |
|
32 |
|
eqid |
|
33 |
2 32
|
grpcl |
|
34 |
28 30 31 33
|
syl3anc |
|
35 |
|
simplll |
|
36 |
|
simpllr |
|
37 |
|
eqid |
|
38 |
2 37 32
|
mulgdi |
|
39 |
35 36 30 31 38
|
syl13anc |
|
40 |
|
simprr |
|
41 |
40
|
adantr |
|
42 |
2 1 37 9
|
oddvds |
|
43 |
28 30 36 42
|
syl3anc |
|
44 |
41 43
|
mpbid |
|
45 |
|
simprr |
|
46 |
2 1 37 9
|
oddvds |
|
47 |
28 31 36 46
|
syl3anc |
|
48 |
45 47
|
mpbid |
|
49 |
44 48
|
oveq12d |
|
50 |
28 10
|
syl |
|
51 |
2 32 9
|
grplid |
|
52 |
28 50 51
|
syl2anc |
|
53 |
39 49 52
|
3eqtrd |
|
54 |
2 1 37 9
|
oddvds |
|
55 |
28 34 36 54
|
syl3anc |
|
56 |
53 55
|
mpbird |
|
57 |
26 34 56
|
elrabd |
|
58 |
24 57
|
sylan2b |
|
59 |
58
|
ralrimiva |
|
60 |
|
fveq2 |
|
61 |
60
|
breq1d |
|
62 |
|
eqid |
|
63 |
2 62
|
grpinvcl |
|
64 |
27 29 63
|
syl2anc |
|
65 |
1 62 2
|
odinv |
|
66 |
27 29 65
|
syl2anc |
|
67 |
66 40
|
eqbrtrd |
|
68 |
61 64 67
|
elrabd |
|
69 |
59 68
|
jca |
|
70 |
21 69
|
sylan2b |
|
71 |
70
|
ralrimiva |
|
72 |
2 32 62
|
issubg2 |
|
73 |
8 72
|
syl |
|
74 |
4 18 71 73
|
mpbir3and |
|