Metamath Proof Explorer


Theorem odf

Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
Assertion odf O : X 0

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 c0ex 0 V
4 ltso < Or
5 4 infex sup w < V
6 3 5 ifex if w = 0 sup w < V
7 6 csbex z | z G y = 0 G / w if w = 0 sup w < V
8 eqid G = G
9 eqid 0 G = 0 G
10 1 8 9 2 odfval O = y X z | z G y = 0 G / w if w = 0 sup w <
11 7 10 fnmpti O Fn X
12 1 2 odcl x X O x 0
13 12 rgen x X O x 0
14 ffnfv O : X 0 O Fn X x X O x 0
15 11 13 14 mpbir2an O : X 0