Metamath Proof Explorer


Theorem odf1

Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odf1.1 X = Base G
odf1.2 O = od G
odf1.3 · ˙ = G
odf1.4 F = x x · ˙ A
Assertion odf1 G Grp A X O A = 0 F : 1-1 X

Proof

Step Hyp Ref Expression
1 odf1.1 X = Base G
2 odf1.2 O = od G
3 odf1.3 · ˙ = G
4 odf1.4 F = x x · ˙ A
5 1 3 mulgcl G Grp x A X x · ˙ A X
6 5 3expa G Grp x A X x · ˙ A X
7 6 an32s G Grp A X x x · ˙ A X
8 7 4 fmptd G Grp A X F : X
9 8 adantr G Grp A X O A = 0 F : X
10 oveq1 x = y x · ˙ A = y · ˙ A
11 ovex x · ˙ A V
12 10 4 11 fvmpt3i y F y = y · ˙ A
13 oveq1 x = z x · ˙ A = z · ˙ A
14 13 4 11 fvmpt3i z F z = z · ˙ A
15 12 14 eqeqan12d y z F y = F z y · ˙ A = z · ˙ A
16 15 adantl G Grp A X O A = 0 y z F y = F z y · ˙ A = z · ˙ A
17 simplr G Grp A X O A = 0 y z O A = 0
18 17 breq1d G Grp A X O A = 0 y z O A y z 0 y z
19 eqid 0 G = 0 G
20 1 2 3 19 odcong G Grp A X y z O A y z y · ˙ A = z · ˙ A
21 20 ad4ant124 G Grp A X O A = 0 y z O A y z y · ˙ A = z · ˙ A
22 zsubcl y z y z
23 22 adantl G Grp A X O A = 0 y z y z
24 0dvds y z 0 y z y z = 0
25 23 24 syl G Grp A X O A = 0 y z 0 y z y z = 0
26 18 21 25 3bitr3d G Grp A X O A = 0 y z y · ˙ A = z · ˙ A y z = 0
27 zcn y y
28 zcn z z
29 subeq0 y z y z = 0 y = z
30 27 28 29 syl2an y z y z = 0 y = z
31 30 adantl G Grp A X O A = 0 y z y z = 0 y = z
32 16 26 31 3bitrd G Grp A X O A = 0 y z F y = F z y = z
33 32 biimpd G Grp A X O A = 0 y z F y = F z y = z
34 33 ralrimivva G Grp A X O A = 0 y z F y = F z y = z
35 dff13 F : 1-1 X F : X y z F y = F z y = z
36 9 34 35 sylanbrc G Grp A X O A = 0 F : 1-1 X
37 1 2 3 19 odid A X O A · ˙ A = 0 G
38 1 19 3 mulg0 A X 0 · ˙ A = 0 G
39 37 38 eqtr4d A X O A · ˙ A = 0 · ˙ A
40 39 ad2antlr G Grp A X F : 1-1 X O A · ˙ A = 0 · ˙ A
41 1 2 odcl A X O A 0
42 41 ad2antlr G Grp A X F : 1-1 X O A 0
43 42 nn0zd G Grp A X F : 1-1 X O A
44 oveq1 x = O A x · ˙ A = O A · ˙ A
45 44 4 11 fvmpt3i O A F O A = O A · ˙ A
46 43 45 syl G Grp A X F : 1-1 X F O A = O A · ˙ A
47 0zd G Grp A X F : 1-1 X 0
48 oveq1 x = 0 x · ˙ A = 0 · ˙ A
49 48 4 11 fvmpt3i 0 F 0 = 0 · ˙ A
50 47 49 syl G Grp A X F : 1-1 X F 0 = 0 · ˙ A
51 40 46 50 3eqtr4d G Grp A X F : 1-1 X F O A = F 0
52 simpr G Grp A X F : 1-1 X F : 1-1 X
53 f1fveq F : 1-1 X O A 0 F O A = F 0 O A = 0
54 52 43 47 53 syl12anc G Grp A X F : 1-1 X F O A = F 0 O A = 0
55 51 54 mpbid G Grp A X F : 1-1 X O A = 0
56 36 55 impbida G Grp A X O A = 0 F : 1-1 X