Step |
Hyp |
Ref |
Expression |
1 |
|
odf1.1 |
|
2 |
|
odf1.2 |
|
3 |
|
odf1.3 |
|
4 |
|
odf1.4 |
|
5 |
1 3
|
mulgcl |
|
6 |
5
|
3expa |
|
7 |
6
|
an32s |
|
8 |
7 4
|
fmptd |
|
9 |
8
|
adantr |
|
10 |
|
oveq1 |
|
11 |
|
ovex |
|
12 |
10 4 11
|
fvmpt3i |
|
13 |
|
oveq1 |
|
14 |
13 4 11
|
fvmpt3i |
|
15 |
12 14
|
eqeqan12d |
|
16 |
15
|
adantl |
|
17 |
|
simplr |
|
18 |
17
|
breq1d |
|
19 |
|
eqid |
|
20 |
1 2 3 19
|
odcong |
|
21 |
20
|
ad4ant124 |
|
22 |
|
zsubcl |
|
23 |
22
|
adantl |
|
24 |
|
0dvds |
|
25 |
23 24
|
syl |
|
26 |
18 21 25
|
3bitr3d |
|
27 |
|
zcn |
|
28 |
|
zcn |
|
29 |
|
subeq0 |
|
30 |
27 28 29
|
syl2an |
|
31 |
30
|
adantl |
|
32 |
16 26 31
|
3bitrd |
|
33 |
32
|
biimpd |
|
34 |
33
|
ralrimivva |
|
35 |
|
dff13 |
|
36 |
9 34 35
|
sylanbrc |
|
37 |
1 2 3 19
|
odid |
|
38 |
1 19 3
|
mulg0 |
|
39 |
37 38
|
eqtr4d |
|
40 |
39
|
ad2antlr |
|
41 |
1 2
|
odcl |
|
42 |
41
|
ad2antlr |
|
43 |
42
|
nn0zd |
|
44 |
|
oveq1 |
|
45 |
44 4 11
|
fvmpt3i |
|
46 |
43 45
|
syl |
|
47 |
|
0zd |
|
48 |
|
oveq1 |
|
49 |
48 4 11
|
fvmpt3i |
|
50 |
47 49
|
syl |
|
51 |
40 46 50
|
3eqtr4d |
|
52 |
|
simpr |
|
53 |
|
f1fveq |
|
54 |
52 43 47 53
|
syl12anc |
|
55 |
51 54
|
mpbid |
|
56 |
36 55
|
impbida |
|