Metamath Proof Explorer


Theorem odf1o1

Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odf1o1.x X = Base G
odf1o1.t · ˙ = G
odf1o1.o O = od G
odf1o1.k K = mrCls SubGrp G
Assertion odf1o1 G Grp A X O A = 0 x x · ˙ A : 1-1 onto K A

Proof

Step Hyp Ref Expression
1 odf1o1.x X = Base G
2 odf1o1.t · ˙ = G
3 odf1o1.o O = od G
4 odf1o1.k K = mrCls SubGrp G
5 simpl1 G Grp A X O A = 0 x G Grp
6 1 subgacs G Grp SubGrp G ACS X
7 acsmre SubGrp G ACS X SubGrp G Moore X
8 5 6 7 3syl G Grp A X O A = 0 x SubGrp G Moore X
9 simpl2 G Grp A X O A = 0 x A X
10 9 snssd G Grp A X O A = 0 x A X
11 4 mrccl SubGrp G Moore X A X K A SubGrp G
12 8 10 11 syl2anc G Grp A X O A = 0 x K A SubGrp G
13 simpr G Grp A X O A = 0 x x
14 8 4 10 mrcssidd G Grp A X O A = 0 x A K A
15 snidg A X A A
16 9 15 syl G Grp A X O A = 0 x A A
17 14 16 sseldd G Grp A X O A = 0 x A K A
18 2 subgmulgcl K A SubGrp G x A K A x · ˙ A K A
19 12 13 17 18 syl3anc G Grp A X O A = 0 x x · ˙ A K A
20 19 ex G Grp A X O A = 0 x x · ˙ A K A
21 simpl3 G Grp A X O A = 0 x y O A = 0
22 21 breq1d G Grp A X O A = 0 x y O A x y 0 x y
23 zsubcl x y x y
24 23 adantl G Grp A X O A = 0 x y x y
25 0dvds x y 0 x y x y = 0
26 24 25 syl G Grp A X O A = 0 x y 0 x y x y = 0
27 22 26 bitrd G Grp A X O A = 0 x y O A x y x y = 0
28 simpl1 G Grp A X O A = 0 x y G Grp
29 simpl2 G Grp A X O A = 0 x y A X
30 simprl G Grp A X O A = 0 x y x
31 simprr G Grp A X O A = 0 x y y
32 eqid 0 G = 0 G
33 1 3 2 32 odcong G Grp A X x y O A x y x · ˙ A = y · ˙ A
34 28 29 30 31 33 syl112anc G Grp A X O A = 0 x y O A x y x · ˙ A = y · ˙ A
35 zcn x x
36 zcn y y
37 subeq0 x y x y = 0 x = y
38 35 36 37 syl2an x y x y = 0 x = y
39 38 adantl G Grp A X O A = 0 x y x y = 0 x = y
40 27 34 39 3bitr3d G Grp A X O A = 0 x y x · ˙ A = y · ˙ A x = y
41 40 ex G Grp A X O A = 0 x y x · ˙ A = y · ˙ A x = y
42 20 41 dom2lem G Grp A X O A = 0 x x · ˙ A : 1-1 K A
43 19 fmpttd G Grp A X O A = 0 x x · ˙ A : K A
44 eqid x x · ˙ A = x x · ˙ A
45 1 2 44 4 cycsubg2 G Grp A X K A = ran x x · ˙ A
46 45 3adant3 G Grp A X O A = 0 K A = ran x x · ˙ A
47 46 eqcomd G Grp A X O A = 0 ran x x · ˙ A = K A
48 dffo2 x x · ˙ A : onto K A x x · ˙ A : K A ran x x · ˙ A = K A
49 43 47 48 sylanbrc G Grp A X O A = 0 x x · ˙ A : onto K A
50 df-f1o x x · ˙ A : 1-1 onto K A x x · ˙ A : 1-1 K A x x · ˙ A : onto K A
51 42 49 50 sylanbrc G Grp A X O A = 0 x x · ˙ A : 1-1 onto K A