Step |
Hyp |
Ref |
Expression |
1 |
|
odf1o1.x |
|
2 |
|
odf1o1.t |
|
3 |
|
odf1o1.o |
|
4 |
|
odf1o1.k |
|
5 |
|
simpl1 |
|
6 |
1
|
subgacs |
|
7 |
|
acsmre |
|
8 |
5 6 7
|
3syl |
|
9 |
|
simpl2 |
|
10 |
9
|
snssd |
|
11 |
4
|
mrccl |
|
12 |
8 10 11
|
syl2anc |
|
13 |
|
simpr |
|
14 |
8 4 10
|
mrcssidd |
|
15 |
|
snidg |
|
16 |
9 15
|
syl |
|
17 |
14 16
|
sseldd |
|
18 |
2
|
subgmulgcl |
|
19 |
12 13 17 18
|
syl3anc |
|
20 |
19
|
ex |
|
21 |
|
simpl3 |
|
22 |
21
|
breq1d |
|
23 |
|
zsubcl |
|
24 |
23
|
adantl |
|
25 |
|
0dvds |
|
26 |
24 25
|
syl |
|
27 |
22 26
|
bitrd |
|
28 |
|
simpl1 |
|
29 |
|
simpl2 |
|
30 |
|
simprl |
|
31 |
|
simprr |
|
32 |
|
eqid |
|
33 |
1 3 2 32
|
odcong |
|
34 |
28 29 30 31 33
|
syl112anc |
|
35 |
|
zcn |
|
36 |
|
zcn |
|
37 |
|
subeq0 |
|
38 |
35 36 37
|
syl2an |
|
39 |
38
|
adantl |
|
40 |
27 34 39
|
3bitr3d |
|
41 |
40
|
ex |
|
42 |
20 41
|
dom2lem |
|
43 |
19
|
fmpttd |
|
44 |
|
eqid |
|
45 |
1 2 44 4
|
cycsubg2 |
|
46 |
45
|
3adant3 |
|
47 |
46
|
eqcomd |
|
48 |
|
dffo2 |
|
49 |
43 47 48
|
sylanbrc |
|
50 |
|
df-f1o |
|
51 |
42 49 50
|
sylanbrc |
|