| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odf1o1.x |  | 
						
							| 2 |  | odf1o1.t |  | 
						
							| 3 |  | odf1o1.o |  | 
						
							| 4 |  | odf1o1.k |  | 
						
							| 5 |  | simpl1 |  | 
						
							| 6 | 1 | subgacs |  | 
						
							| 7 |  | acsmre |  | 
						
							| 8 | 5 6 7 | 3syl |  | 
						
							| 9 |  | simpl2 |  | 
						
							| 10 | 9 | snssd |  | 
						
							| 11 | 4 | mrccl |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 8 4 10 | mrcssidd |  | 
						
							| 15 |  | snidg |  | 
						
							| 16 | 9 15 | syl |  | 
						
							| 17 | 14 16 | sseldd |  | 
						
							| 18 | 2 | subgmulgcl |  | 
						
							| 19 | 12 13 17 18 | syl3anc |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 |  | simpl3 |  | 
						
							| 22 | 21 | breq1d |  | 
						
							| 23 |  | zsubcl |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | 0dvds |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 22 26 | bitrd |  | 
						
							| 28 |  | simpl1 |  | 
						
							| 29 |  | simpl2 |  | 
						
							| 30 |  | simprl |  | 
						
							| 31 |  | simprr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 1 3 2 32 | odcong |  | 
						
							| 34 | 28 29 30 31 33 | syl112anc |  | 
						
							| 35 |  | zcn |  | 
						
							| 36 |  | zcn |  | 
						
							| 37 |  | subeq0 |  | 
						
							| 38 | 35 36 37 | syl2an |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 27 34 39 | 3bitr3d |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 20 41 | dom2lem |  | 
						
							| 43 | 19 | fmpttd |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 1 2 44 4 | cycsubg2 |  | 
						
							| 46 | 45 | 3adant3 |  | 
						
							| 47 | 46 | eqcomd |  | 
						
							| 48 |  | dffo2 |  | 
						
							| 49 | 43 47 48 | sylanbrc |  | 
						
							| 50 |  | df-f1o |  | 
						
							| 51 | 42 49 50 | sylanbrc |  |