Description: Value of the order function. For a shorter proof using ax-rep , see odfvalALT . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odval.1 | |
|
odval.2 | |
||
odval.3 | |
||
odval.4 | |
||
Assertion | odfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odval.1 | |
|
2 | odval.2 | |
|
3 | odval.3 | |
|
4 | odval.4 | |
|
5 | fveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | fveq2 | |
|
8 | 7 2 | eqtr4di | |
9 | 8 | oveqd | |
10 | fveq2 | |
|
11 | 10 3 | eqtr4di | |
12 | 9 11 | eqeq12d | |
13 | 12 | rabbidv | |
14 | 13 | csbeq1d | |
15 | 6 14 | mpteq12dv | |
16 | df-od | |
|
17 | 1 | fvexi | |
18 | nn0ex | |
|
19 | nnex | |
|
20 | 19 | rabex | |
21 | eqeq1 | |
|
22 | infeq1 | |
|
23 | 21 22 | ifbieq2d | |
24 | 20 23 | csbie | |
25 | 0nn0 | |
|
26 | 25 | a1i | |
27 | df-ne | |
|
28 | ssrab2 | |
|
29 | nnuz | |
|
30 | 28 29 | sseqtri | |
31 | infssuzcl | |
|
32 | 30 31 | mpan | |
33 | 28 32 | sselid | |
34 | 27 33 | sylbir | |
35 | 34 | nnnn0d | |
36 | 35 | adantl | |
37 | 26 36 | ifclda | |
38 | 37 | mptru | |
39 | 24 38 | eqeltri | |
40 | 39 | rgenw | |
41 | 17 18 40 | mptexw | |
42 | 15 16 41 | fvmpt | |
43 | fvprc | |
|
44 | fvprc | |
|
45 | 1 44 | eqtrid | |
46 | 45 | mpteq1d | |
47 | mpt0 | |
|
48 | 46 47 | eqtrdi | |
49 | 43 48 | eqtr4d | |
50 | 42 49 | pm2.61i | |
51 | 4 50 | eqtri | |