Metamath Proof Explorer


Theorem odfval

Description: Value of the order function. For a shorter proof using ax-rep , see odfvalALT . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)

Ref Expression
Hypotheses odval.1 X=BaseG
odval.2 ·˙=G
odval.3 0˙=0G
odval.4 O=odG
Assertion odfval O=xXy|y·˙x=0˙/iifi=0supi<

Proof

Step Hyp Ref Expression
1 odval.1 X=BaseG
2 odval.2 ·˙=G
3 odval.3 0˙=0G
4 odval.4 O=odG
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=X
7 fveq2 g=Gg=G
8 7 2 eqtr4di g=Gg=·˙
9 8 oveqd g=Gygx=y·˙x
10 fveq2 g=G0g=0G
11 10 3 eqtr4di g=G0g=0˙
12 9 11 eqeq12d g=Gygx=0gy·˙x=0˙
13 12 rabbidv g=Gy|ygx=0g=y|y·˙x=0˙
14 13 csbeq1d g=Gy|ygx=0g/iifi=0supi<=y|y·˙x=0˙/iifi=0supi<
15 6 14 mpteq12dv g=GxBasegy|ygx=0g/iifi=0supi<=xXy|y·˙x=0˙/iifi=0supi<
16 df-od od=gVxBasegy|ygx=0g/iifi=0supi<
17 1 fvexi XV
18 nn0ex 0V
19 nnex V
20 19 rabex y|y·˙x=0˙V
21 eqeq1 i=y|y·˙x=0˙i=y|y·˙x=0˙=
22 infeq1 i=y|y·˙x=0˙supi<=supy|y·˙x=0˙<
23 21 22 ifbieq2d i=y|y·˙x=0˙ifi=0supi<=ify|y·˙x=0˙=0supy|y·˙x=0˙<
24 20 23 csbie y|y·˙x=0˙/iifi=0supi<=ify|y·˙x=0˙=0supy|y·˙x=0˙<
25 0nn0 00
26 25 a1i y|y·˙x=0˙=00
27 df-ne y|y·˙x=0˙¬y|y·˙x=0˙=
28 ssrab2 y|y·˙x=0˙
29 nnuz =1
30 28 29 sseqtri y|y·˙x=0˙1
31 infssuzcl y|y·˙x=0˙1y|y·˙x=0˙supy|y·˙x=0˙<y|y·˙x=0˙
32 30 31 mpan y|y·˙x=0˙supy|y·˙x=0˙<y|y·˙x=0˙
33 28 32 sselid y|y·˙x=0˙supy|y·˙x=0˙<
34 27 33 sylbir ¬y|y·˙x=0˙=supy|y·˙x=0˙<
35 34 nnnn0d ¬y|y·˙x=0˙=supy|y·˙x=0˙<0
36 35 adantl ¬y|y·˙x=0˙=supy|y·˙x=0˙<0
37 26 36 ifclda ify|y·˙x=0˙=0supy|y·˙x=0˙<0
38 37 mptru ify|y·˙x=0˙=0supy|y·˙x=0˙<0
39 24 38 eqeltri y|y·˙x=0˙/iifi=0supi<0
40 39 rgenw xXy|y·˙x=0˙/iifi=0supi<0
41 17 18 40 mptexw xXy|y·˙x=0˙/iifi=0supi<V
42 15 16 41 fvmpt GVodG=xXy|y·˙x=0˙/iifi=0supi<
43 fvprc ¬GVodG=
44 fvprc ¬GVBaseG=
45 1 44 eqtrid ¬GVX=
46 45 mpteq1d ¬GVxXy|y·˙x=0˙/iifi=0supi<=xy|y·˙x=0˙/iifi=0supi<
47 mpt0 xy|y·˙x=0˙/iifi=0supi<=
48 46 47 eqtrdi ¬GVxXy|y·˙x=0˙/iifi=0supi<=
49 43 48 eqtr4d ¬GVodG=xXy|y·˙x=0˙/iifi=0supi<
50 42 49 pm2.61i odG=xXy|y·˙x=0˙/iifi=0supi<
51 4 50 eqtri O=xXy|y·˙x=0˙/iifi=0supi<