Metamath Proof Explorer


Theorem odfvalALT

Description: Shorter proof of odfval using ax-rep . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses odval.1 X = Base G
odval.2 · ˙ = G
odval.3 0 ˙ = 0 G
odval.4 O = od G
Assertion odfvalALT O = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <

Proof

Step Hyp Ref Expression
1 odval.1 X = Base G
2 odval.2 · ˙ = G
3 odval.3 0 ˙ = 0 G
4 odval.4 O = od G
5 fveq2 g = G Base g = Base G
6 5 1 eqtr4di g = G Base g = X
7 fveq2 g = G g = G
8 7 2 eqtr4di g = G g = · ˙
9 8 oveqd g = G y g x = y · ˙ x
10 fveq2 g = G 0 g = 0 G
11 10 3 eqtr4di g = G 0 g = 0 ˙
12 9 11 eqeq12d g = G y g x = 0 g y · ˙ x = 0 ˙
13 12 rabbidv g = G y | y g x = 0 g = y | y · ˙ x = 0 ˙
14 13 csbeq1d g = G y | y g x = 0 g / i if i = 0 sup i < = y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
15 6 14 mpteq12dv g = G x Base g y | y g x = 0 g / i if i = 0 sup i < = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
16 df-od od = g V x Base g y | y g x = 0 g / i if i = 0 sup i <
17 15 16 1 mptfvmpt G V od G = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
18 fvprc ¬ G V od G =
19 fvprc ¬ G V Base G =
20 1 19 eqtrid ¬ G V X =
21 20 mpteq1d ¬ G V x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i < = x y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
22 mpt0 x y | y · ˙ x = 0 ˙ / i if i = 0 sup i < =
23 21 22 eqtrdi ¬ G V x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i < =
24 18 23 eqtr4d ¬ G V od G = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
25 17 24 pm2.61i od G = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
26 4 25 eqtri O = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <