Metamath Proof Explorer


Theorem odhash2

Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X = Base G
odhash.o O = od G
odhash.k K = mrCls SubGrp G
Assertion odhash2 G Grp A X O A K A = O A

Proof

Step Hyp Ref Expression
1 odhash.x X = Base G
2 odhash.o O = od G
3 odhash.k K = mrCls SubGrp G
4 eqid G = G
5 1 4 2 3 odf1o2 G Grp A X O A x 0 ..^ O A x G A : 0 ..^ O A 1-1 onto K A
6 ovex 0 ..^ O A V
7 6 f1oen x 0 ..^ O A x G A : 0 ..^ O A 1-1 onto K A 0 ..^ O A K A
8 hasheni 0 ..^ O A K A 0 ..^ O A = K A
9 5 7 8 3syl G Grp A X O A 0 ..^ O A = K A
10 1 2 odcl A X O A 0
11 10 3ad2ant2 G Grp A X O A O A 0
12 hashfzo0 O A 0 0 ..^ O A = O A
13 11 12 syl G Grp A X O A 0 ..^ O A = O A
14 9 13 eqtr3d G Grp A X O A K A = O A