Metamath Proof Explorer


Theorem odhash3

Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X = Base G
odhash.o O = od G
odhash.k K = mrCls SubGrp G
Assertion odhash3 G Grp A X K A Fin O A = K A

Proof

Step Hyp Ref Expression
1 odhash.x X = Base G
2 odhash.o O = od G
3 odhash.k K = mrCls SubGrp G
4 1 2 odcl A X O A 0
5 4 3ad2ant2 G Grp A X K A Fin O A 0
6 hashcl K A Fin K A 0
7 6 nn0red K A Fin K A
8 pnfnre +∞
9 8 neli ¬ +∞
10 1 2 3 odhash G Grp A X O A = 0 K A = +∞
11 10 eleq1d G Grp A X O A = 0 K A +∞
12 9 11 mtbiri G Grp A X O A = 0 ¬ K A
13 12 3expia G Grp A X O A = 0 ¬ K A
14 13 necon2ad G Grp A X K A O A 0
15 7 14 syl5 G Grp A X K A Fin O A 0
16 15 3impia G Grp A X K A Fin O A 0
17 elnnne0 O A O A 0 O A 0
18 5 16 17 sylanbrc G Grp A X K A Fin O A
19 1 2 3 odhash2 G Grp A X O A K A = O A
20 18 19 syld3an3 G Grp A X K A Fin K A = O A
21 20 eqcomd G Grp A X K A Fin O A = K A