Metamath Proof Explorer


Theorem odid

Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
odid.3 · ˙ = G
odid.4 0 ˙ = 0 G
Assertion odid A X O A · ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 odid.3 · ˙ = G
4 odid.4 0 ˙ = 0 G
5 oveq1 O A = 0 O A · ˙ A = 0 · ˙ A
6 1 4 3 mulg0 A X 0 · ˙ A = 0 ˙
7 5 6 sylan9eqr A X O A = 0 O A · ˙ A = 0 ˙
8 7 adantrr A X O A = 0 y | y · ˙ A = 0 ˙ = O A · ˙ A = 0 ˙
9 oveq1 y = O A y · ˙ A = O A · ˙ A
10 9 eqeq1d y = O A y · ˙ A = 0 ˙ O A · ˙ A = 0 ˙
11 10 elrab O A y | y · ˙ A = 0 ˙ O A O A · ˙ A = 0 ˙
12 11 simprbi O A y | y · ˙ A = 0 ˙ O A · ˙ A = 0 ˙
13 12 adantl A X O A y | y · ˙ A = 0 ˙ O A · ˙ A = 0 ˙
14 eqid y | y · ˙ A = 0 ˙ = y | y · ˙ A = 0 ˙
15 1 3 4 2 14 odlem1 A X O A = 0 y | y · ˙ A = 0 ˙ = O A y | y · ˙ A = 0 ˙
16 8 13 15 mpjaodan A X O A · ˙ A = 0 ˙