Metamath Proof Explorer


Theorem odinf

Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odf1.1 X = Base G
odf1.2 O = od G
odf1.3 · ˙ = G
odf1.4 F = x x · ˙ A
Assertion odinf G Grp A X O A = 0 ¬ ran F Fin

Proof

Step Hyp Ref Expression
1 odf1.1 X = Base G
2 odf1.2 O = od G
3 odf1.3 · ˙ = G
4 odf1.4 F = x x · ˙ A
5 znnen
6 nnenom ω
7 5 6 entr2i ω
8 1 2 3 4 odf1 G Grp A X O A = 0 F : 1-1 X
9 8 biimp3a G Grp A X O A = 0 F : 1-1 X
10 f1f F : 1-1 X F : X
11 zex V
12 1 fvexi X V
13 fex2 F : X V X V F V
14 11 12 13 mp3an23 F : X F V
15 9 10 14 3syl G Grp A X O A = 0 F V
16 f1f1orn F : 1-1 X F : 1-1 onto ran F
17 9 16 syl G Grp A X O A = 0 F : 1-1 onto ran F
18 f1oen3g F V F : 1-1 onto ran F ran F
19 15 17 18 syl2anc G Grp A X O A = 0 ran F
20 entr ω ran F ω ran F
21 7 19 20 sylancr G Grp A X O A = 0 ω ran F
22 endom ω ran F ω ran F
23 domnsym ω ran F ¬ ran F ω
24 21 22 23 3syl G Grp A X O A = 0 ¬ ran F ω
25 isfinite ran F Fin ran F ω
26 24 25 sylnibr G Grp A X O A = 0 ¬ ran F Fin