Metamath Proof Explorer


Theorem odlem1

Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Hypotheses odval.1 X = Base G
odval.2 · ˙ = G
odval.3 0 ˙ = 0 G
odval.4 O = od G
odval.i I = y | y · ˙ A = 0 ˙
Assertion odlem1 A X O A = 0 I = O A I

Proof

Step Hyp Ref Expression
1 odval.1 X = Base G
2 odval.2 · ˙ = G
3 odval.3 0 ˙ = 0 G
4 odval.4 O = od G
5 odval.i I = y | y · ˙ A = 0 ˙
6 1 2 3 4 5 odval A X O A = if I = 0 sup I <
7 eqeq2 0 = if I = 0 sup I < O A = 0 O A = if I = 0 sup I <
8 7 imbi1d 0 = if I = 0 sup I < O A = 0 O A = 0 I = O A I O A = if I = 0 sup I < O A = 0 I = O A I
9 eqeq2 sup I < = if I = 0 sup I < O A = sup I < O A = if I = 0 sup I <
10 9 imbi1d sup I < = if I = 0 sup I < O A = sup I < O A = 0 I = O A I O A = if I = 0 sup I < O A = 0 I = O A I
11 orc O A = 0 I = O A = 0 I = O A I
12 11 expcom I = O A = 0 O A = 0 I = O A I
13 12 adantl A X I = O A = 0 O A = 0 I = O A I
14 ssrab2 y | y · ˙ A = 0 ˙
15 nnuz = 1
16 15 eqcomi 1 =
17 14 5 16 3sstr4i I 1
18 neqne ¬ I = I
19 18 adantl A X ¬ I = I
20 infssuzcl I 1 I sup I < I
21 17 19 20 sylancr A X ¬ I = sup I < I
22 eleq1a sup I < I O A = sup I < O A I
23 21 22 syl A X ¬ I = O A = sup I < O A I
24 olc O A I O A = 0 I = O A I
25 23 24 syl6 A X ¬ I = O A = sup I < O A = 0 I = O A I
26 8 10 13 25 ifbothda A X O A = if I = 0 sup I < O A = 0 I = O A I
27 6 26 mpd A X O A = 0 I = O A I