| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  | 
						
							| 2 |  | odcl.2 |  | 
						
							| 3 |  | odid.3 |  | 
						
							| 4 |  | odid.4 |  | 
						
							| 5 |  | simpl3 |  | 
						
							| 6 | 5 | zred |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 7 | nnrpd |  | 
						
							| 9 |  | modval |  | 
						
							| 10 | 6 8 9 | syl2anc |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 |  | simpl1 |  | 
						
							| 13 | 7 | nnzd |  | 
						
							| 14 | 6 7 | nndivred |  | 
						
							| 15 | 14 | flcld |  | 
						
							| 16 | 13 15 | zmulcld |  | 
						
							| 17 |  | simpl2 |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 3 18 | mulgsubdir |  | 
						
							| 20 | 12 5 16 17 19 | syl13anc |  | 
						
							| 21 |  | nncn |  | 
						
							| 22 |  | zcn |  | 
						
							| 23 |  | mulcom |  | 
						
							| 24 | 21 22 23 | syl2an |  | 
						
							| 25 | 7 15 24 | syl2anc |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 1 3 | mulgass |  | 
						
							| 28 | 12 15 13 17 27 | syl13anc |  | 
						
							| 29 | 1 2 3 4 | odid |  | 
						
							| 30 | 17 29 | syl |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 1 3 4 | mulgz |  | 
						
							| 33 | 12 15 32 | syl2anc |  | 
						
							| 34 | 31 33 | eqtrd |  | 
						
							| 35 | 26 28 34 | 3eqtrd |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 1 3 | mulgcl |  | 
						
							| 38 | 12 5 17 37 | syl3anc |  | 
						
							| 39 | 1 4 18 | grpsubid1 |  | 
						
							| 40 | 12 38 39 | syl2anc |  | 
						
							| 41 | 36 40 | eqtrd |  | 
						
							| 42 | 11 20 41 | 3eqtrd |  |