Metamath Proof Explorer


Theorem odmodnn0

Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
odid.3 · ˙ = G
odid.4 0 ˙ = 0 G
Assertion odmodnn0 G Mnd A X N 0 O A N mod O A · ˙ A = N · ˙ A

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 odid.3 · ˙ = G
4 odid.4 0 ˙ = 0 G
5 simpl1 G Mnd A X N 0 O A G Mnd
6 nnnn0 O A O A 0
7 6 adantl G Mnd A X N 0 O A O A 0
8 simpl3 G Mnd A X N 0 O A N 0
9 8 nn0red G Mnd A X N 0 O A N
10 nnrp O A O A +
11 10 adantl G Mnd A X N 0 O A O A +
12 9 11 rerpdivcld G Mnd A X N 0 O A N O A
13 8 nn0ge0d G Mnd A X N 0 O A 0 N
14 nnre O A O A
15 14 adantl G Mnd A X N 0 O A O A
16 nngt0 O A 0 < O A
17 16 adantl G Mnd A X N 0 O A 0 < O A
18 divge0 N 0 N O A 0 < O A 0 N O A
19 9 13 15 17 18 syl22anc G Mnd A X N 0 O A 0 N O A
20 flge0nn0 N O A 0 N O A N O A 0
21 12 19 20 syl2anc G Mnd A X N 0 O A N O A 0
22 7 21 nn0mulcld G Mnd A X N 0 O A O A N O A 0
23 8 nn0zd G Mnd A X N 0 O A N
24 zmodcl N O A N mod O A 0
25 23 24 sylancom G Mnd A X N 0 O A N mod O A 0
26 simpl2 G Mnd A X N 0 O A A X
27 eqid + G = + G
28 1 3 27 mulgnn0dir G Mnd O A N O A 0 N mod O A 0 A X O A N O A + N mod O A · ˙ A = O A N O A · ˙ A + G N mod O A · ˙ A
29 5 22 25 26 28 syl13anc G Mnd A X N 0 O A O A N O A + N mod O A · ˙ A = O A N O A · ˙ A + G N mod O A · ˙ A
30 15 recnd G Mnd A X N 0 O A O A
31 21 nn0cnd G Mnd A X N 0 O A N O A
32 30 31 mulcomd G Mnd A X N 0 O A O A N O A = N O A O A
33 32 oveq1d G Mnd A X N 0 O A O A N O A · ˙ A = N O A O A · ˙ A
34 1 3 mulgnn0ass G Mnd N O A 0 O A 0 A X N O A O A · ˙ A = N O A · ˙ O A · ˙ A
35 5 21 7 26 34 syl13anc G Mnd A X N 0 O A N O A O A · ˙ A = N O A · ˙ O A · ˙ A
36 1 2 3 4 odid A X O A · ˙ A = 0 ˙
37 26 36 syl G Mnd A X N 0 O A O A · ˙ A = 0 ˙
38 37 oveq2d G Mnd A X N 0 O A N O A · ˙ O A · ˙ A = N O A · ˙ 0 ˙
39 1 3 4 mulgnn0z G Mnd N O A 0 N O A · ˙ 0 ˙ = 0 ˙
40 5 21 39 syl2anc G Mnd A X N 0 O A N O A · ˙ 0 ˙ = 0 ˙
41 38 40 eqtrd G Mnd A X N 0 O A N O A · ˙ O A · ˙ A = 0 ˙
42 35 41 eqtrd G Mnd A X N 0 O A N O A O A · ˙ A = 0 ˙
43 33 42 eqtrd G Mnd A X N 0 O A O A N O A · ˙ A = 0 ˙
44 43 oveq1d G Mnd A X N 0 O A O A N O A · ˙ A + G N mod O A · ˙ A = 0 ˙ + G N mod O A · ˙ A
45 29 44 eqtrd G Mnd A X N 0 O A O A N O A + N mod O A · ˙ A = 0 ˙ + G N mod O A · ˙ A
46 modval N O A + N mod O A = N O A N O A
47 9 11 46 syl2anc G Mnd A X N 0 O A N mod O A = N O A N O A
48 47 oveq2d G Mnd A X N 0 O A O A N O A + N mod O A = O A N O A + N - O A N O A
49 22 nn0cnd G Mnd A X N 0 O A O A N O A
50 8 nn0cnd G Mnd A X N 0 O A N
51 49 50 pncan3d G Mnd A X N 0 O A O A N O A + N - O A N O A = N
52 48 51 eqtrd G Mnd A X N 0 O A O A N O A + N mod O A = N
53 52 oveq1d G Mnd A X N 0 O A O A N O A + N mod O A · ˙ A = N · ˙ A
54 1 3 mulgnn0cl G Mnd N mod O A 0 A X N mod O A · ˙ A X
55 5 25 26 54 syl3anc G Mnd A X N 0 O A N mod O A · ˙ A X
56 1 27 4 mndlid G Mnd N mod O A · ˙ A X 0 ˙ + G N mod O A · ˙ A = N mod O A · ˙ A
57 5 55 56 syl2anc G Mnd A X N 0 O A 0 ˙ + G N mod O A · ˙ A = N mod O A · ˙ A
58 45 53 57 3eqtr3rd G Mnd A X N 0 O A N mod O A · ˙ A = N · ˙ A