Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|
2 |
|
odcl.2 |
|
3 |
|
odid.3 |
|
4 |
|
odid.4 |
|
5 |
|
simpl1 |
|
6 |
|
nnnn0 |
|
7 |
6
|
adantl |
|
8 |
|
simpl3 |
|
9 |
8
|
nn0red |
|
10 |
|
nnrp |
|
11 |
10
|
adantl |
|
12 |
9 11
|
rerpdivcld |
|
13 |
8
|
nn0ge0d |
|
14 |
|
nnre |
|
15 |
14
|
adantl |
|
16 |
|
nngt0 |
|
17 |
16
|
adantl |
|
18 |
|
divge0 |
|
19 |
9 13 15 17 18
|
syl22anc |
|
20 |
|
flge0nn0 |
|
21 |
12 19 20
|
syl2anc |
|
22 |
7 21
|
nn0mulcld |
|
23 |
8
|
nn0zd |
|
24 |
|
zmodcl |
|
25 |
23 24
|
sylancom |
|
26 |
|
simpl2 |
|
27 |
|
eqid |
|
28 |
1 3 27
|
mulgnn0dir |
|
29 |
5 22 25 26 28
|
syl13anc |
|
30 |
15
|
recnd |
|
31 |
21
|
nn0cnd |
|
32 |
30 31
|
mulcomd |
|
33 |
32
|
oveq1d |
|
34 |
1 3
|
mulgnn0ass |
|
35 |
5 21 7 26 34
|
syl13anc |
|
36 |
1 2 3 4
|
odid |
|
37 |
26 36
|
syl |
|
38 |
37
|
oveq2d |
|
39 |
1 3 4
|
mulgnn0z |
|
40 |
5 21 39
|
syl2anc |
|
41 |
38 40
|
eqtrd |
|
42 |
35 41
|
eqtrd |
|
43 |
33 42
|
eqtrd |
|
44 |
43
|
oveq1d |
|
45 |
29 44
|
eqtrd |
|
46 |
|
modval |
|
47 |
9 11 46
|
syl2anc |
|
48 |
47
|
oveq2d |
|
49 |
22
|
nn0cnd |
|
50 |
8
|
nn0cnd |
|
51 |
49 50
|
pncan3d |
|
52 |
48 51
|
eqtrd |
|
53 |
52
|
oveq1d |
|
54 |
1 3
|
mulgnn0cl |
|
55 |
5 25 26 54
|
syl3anc |
|
56 |
1 27 4
|
mndlid |
|
57 |
5 55 56
|
syl2anc |
|
58 |
45 53 57
|
3eqtr3rd |
|