Metamath Proof Explorer


Theorem odmulg

Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X = Base G
odmulgid.2 O = od G
odmulgid.3 · ˙ = G
Assertion odmulg G Grp A X N O A = N gcd O A O N · ˙ A

Proof

Step Hyp Ref Expression
1 odmulgid.1 X = Base G
2 odmulgid.2 O = od G
3 odmulgid.3 · ˙ = G
4 1 3 mulgcl G Grp N A X N · ˙ A X
5 4 3com23 G Grp A X N N · ˙ A X
6 1 2 odcl N · ˙ A X O N · ˙ A 0
7 5 6 syl G Grp A X N O N · ˙ A 0
8 7 nn0cnd G Grp A X N O N · ˙ A
9 8 adantr G Grp A X N N gcd O A = 0 O N · ˙ A
10 9 mul02d G Grp A X N N gcd O A = 0 0 O N · ˙ A = 0
11 simpr G Grp A X N N gcd O A = 0 N gcd O A = 0
12 11 oveq1d G Grp A X N N gcd O A = 0 N gcd O A O N · ˙ A = 0 O N · ˙ A
13 simp3 G Grp A X N N
14 1 2 odcl A X O A 0
15 14 3ad2ant2 G Grp A X N O A 0
16 15 nn0zd G Grp A X N O A
17 gcdeq0 N O A N gcd O A = 0 N = 0 O A = 0
18 13 16 17 syl2anc G Grp A X N N gcd O A = 0 N = 0 O A = 0
19 18 simplbda G Grp A X N N gcd O A = 0 O A = 0
20 10 12 19 3eqtr4rd G Grp A X N N gcd O A = 0 O A = N gcd O A O N · ˙ A
21 simpll3 G Grp A X N N gcd O A 0 x 0 N
22 16 ad2antrr G Grp A X N N gcd O A 0 x 0 O A
23 gcddvds N O A N gcd O A N N gcd O A O A
24 21 22 23 syl2anc G Grp A X N N gcd O A 0 x 0 N gcd O A N N gcd O A O A
25 24 simprd G Grp A X N N gcd O A 0 x 0 N gcd O A O A
26 13 16 gcdcld G Grp A X N N gcd O A 0
27 26 adantr G Grp A X N N gcd O A 0 N gcd O A 0
28 27 nn0zd G Grp A X N N gcd O A 0 N gcd O A
29 28 adantr G Grp A X N N gcd O A 0 x 0 N gcd O A
30 nn0z x 0 x
31 30 adantl G Grp A X N N gcd O A 0 x 0 x
32 dvdstr N gcd O A O A x N gcd O A O A O A x N gcd O A x
33 29 22 31 32 syl3anc G Grp A X N N gcd O A 0 x 0 N gcd O A O A O A x N gcd O A x
34 25 33 mpand G Grp A X N N gcd O A 0 x 0 O A x N gcd O A x
35 7 nn0zd G Grp A X N O N · ˙ A
36 35 ad2antrr G Grp A X N N gcd O A 0 x 0 O N · ˙ A
37 muldvds1 N gcd O A O N · ˙ A x N gcd O A O N · ˙ A x N gcd O A x
38 29 36 31 37 syl3anc G Grp A X N N gcd O A 0 x 0 N gcd O A O N · ˙ A x N gcd O A x
39 dvdszrcl N gcd O A x N gcd O A x
40 divides N gcd O A x N gcd O A x y y N gcd O A = x
41 39 40 syl N gcd O A x N gcd O A x y y N gcd O A = x
42 41 ibi N gcd O A x y y N gcd O A = x
43 35 adantr G Grp A X N N gcd O A 0 y O N · ˙ A
44 simprr G Grp A X N N gcd O A 0 y y
45 28 adantrr G Grp A X N N gcd O A 0 y N gcd O A
46 simprl G Grp A X N N gcd O A 0 y N gcd O A 0
47 dvdscmulr O N · ˙ A y N gcd O A N gcd O A 0 N gcd O A O N · ˙ A N gcd O A y O N · ˙ A y
48 43 44 45 46 47 syl112anc G Grp A X N N gcd O A 0 y N gcd O A O N · ˙ A N gcd O A y O N · ˙ A y
49 1 2 3 odmulgid G Grp A X N y O N · ˙ A y O A y N
50 49 adantrl G Grp A X N N gcd O A 0 y O N · ˙ A y O A y N
51 simpl3 G Grp A X N N gcd O A 0 y N
52 dvdsmulgcd y N O A y N O A y N gcd O A
53 44 51 52 syl2anc G Grp A X N N gcd O A 0 y O A y N O A y N gcd O A
54 48 50 53 3bitrrd G Grp A X N N gcd O A 0 y O A y N gcd O A N gcd O A O N · ˙ A N gcd O A y
55 45 zcnd G Grp A X N N gcd O A 0 y N gcd O A
56 44 zcnd G Grp A X N N gcd O A 0 y y
57 55 56 mulcomd G Grp A X N N gcd O A 0 y N gcd O A y = y N gcd O A
58 57 breq2d G Grp A X N N gcd O A 0 y N gcd O A O N · ˙ A N gcd O A y N gcd O A O N · ˙ A y N gcd O A
59 54 58 bitrd G Grp A X N N gcd O A 0 y O A y N gcd O A N gcd O A O N · ˙ A y N gcd O A
60 59 anassrs G Grp A X N N gcd O A 0 y O A y N gcd O A N gcd O A O N · ˙ A y N gcd O A
61 breq2 y N gcd O A = x O A y N gcd O A O A x
62 breq2 y N gcd O A = x N gcd O A O N · ˙ A y N gcd O A N gcd O A O N · ˙ A x
63 61 62 bibi12d y N gcd O A = x O A y N gcd O A N gcd O A O N · ˙ A y N gcd O A O A x N gcd O A O N · ˙ A x
64 60 63 syl5ibcom G Grp A X N N gcd O A 0 y y N gcd O A = x O A x N gcd O A O N · ˙ A x
65 64 rexlimdva G Grp A X N N gcd O A 0 y y N gcd O A = x O A x N gcd O A O N · ˙ A x
66 42 65 syl5 G Grp A X N N gcd O A 0 N gcd O A x O A x N gcd O A O N · ˙ A x
67 66 adantr G Grp A X N N gcd O A 0 x 0 N gcd O A x O A x N gcd O A O N · ˙ A x
68 34 38 67 pm5.21ndd G Grp A X N N gcd O A 0 x 0 O A x N gcd O A O N · ˙ A x
69 68 ralrimiva G Grp A X N N gcd O A 0 x 0 O A x N gcd O A O N · ˙ A x
70 15 adantr G Grp A X N N gcd O A 0 O A 0
71 7 adantr G Grp A X N N gcd O A 0 O N · ˙ A 0
72 27 71 nn0mulcld G Grp A X N N gcd O A 0 N gcd O A O N · ˙ A 0
73 dvdsext O A 0 N gcd O A O N · ˙ A 0 O A = N gcd O A O N · ˙ A x 0 O A x N gcd O A O N · ˙ A x
74 70 72 73 syl2anc G Grp A X N N gcd O A 0 O A = N gcd O A O N · ˙ A x 0 O A x N gcd O A O N · ˙ A x
75 69 74 mpbird G Grp A X N N gcd O A 0 O A = N gcd O A O N · ˙ A
76 20 75 pm2.61dane G Grp A X N O A = N gcd O A O N · ˙ A