Metamath Proof Explorer


Theorem odmulg2

Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X = Base G
odmulgid.2 O = od G
odmulgid.3 · ˙ = G
Assertion odmulg2 G Grp A X N O N · ˙ A O A

Proof

Step Hyp Ref Expression
1 odmulgid.1 X = Base G
2 odmulgid.2 O = od G
3 odmulgid.3 · ˙ = G
4 1 2 odcl A X O A 0
5 4 nn0zd A X O A
6 5 3ad2ant2 G Grp A X N O A
7 simp3 G Grp A X N N
8 dvdsmul1 O A N O A O A N
9 6 7 8 syl2anc G Grp A X N O A O A N
10 1 2 3 odmulgid G Grp A X N O A O N · ˙ A O A O A O A N
11 6 10 mpdan G Grp A X N O N · ˙ A O A O A O A N
12 9 11 mpbird G Grp A X N O N · ˙ A O A